Test Dataset Multiplication by Timeshift
This commit is contained in:
parent
28bfcfdce3
commit
dce799a52b
@ -34,7 +34,7 @@ main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, hel
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="")
|
||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="")
|
||||
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0, help="")
|
||||
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.5, help="")
|
||||
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="")
|
||||
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="")
|
||||
|
||||
# Training Parameters
|
||||
@ -43,8 +43,8 @@ main_arg_parser.add_argument("--train_version", type=strtobool, required=False,
|
||||
# FIXME: Stochastic weight Avaraging is not good, maybe its my implementation?
|
||||
main_arg_parser.add_argument("--train_sto_weight_avg", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--train_opt_reset_interval", type=int, default=0, help="")
|
||||
main_arg_parser.add_argument("--train_epochs", type=int, default=100, help="")
|
||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=250, help="")
|
||||
main_arg_parser.add_argument("--train_epochs", type=int, default=30, help="")
|
||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=300, help="")
|
||||
main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
|
||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||
|
||||
@ -53,7 +53,7 @@ main_arg_parser.add_argument("--model_type", type=str, default="CC", help="")
|
||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="CC", help="")
|
||||
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 256, 16]", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")
|
||||
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=128, help="")
|
||||
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
|
||||
|
@ -46,8 +46,10 @@ class BinaryMasksDataset(Dataset):
|
||||
continue
|
||||
filename, label = row.strip().split(',')
|
||||
labeldict[filename] = self._to_label[label.lower()] if not self.setting == 'test' else filename
|
||||
if self.stretch:
|
||||
if self.stretch and self.setting == V.DATA_OPTIONS.train:
|
||||
labeldict.update({f'X_{key}': val for key, val in labeldict.items()})
|
||||
labeldict.update({f'X_X_{key}': val for key, val in labeldict.items()})
|
||||
labeldict.update({f'X_X_X_{key}': val for key, val in labeldict.items()})
|
||||
return labeldict
|
||||
|
||||
def __len__(self):
|
||||
|
@ -25,7 +25,7 @@ class BaseOptimizerMixin:
|
||||
|
||||
def configure_optimizers(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
opt = Adam(params=self.parameters(), lr=self.params.lr, weight_decay=0.04)
|
||||
opt = Adam(params=self.parameters(), lr=self.params.lr, weight_decay=1e-7)
|
||||
if self.params.sto_weight_avg:
|
||||
opt = SWA(opt, swa_start=10, swa_freq=5, swa_lr=0.05)
|
||||
return opt
|
||||
|
Loading…
x
Reference in New Issue
Block a user