BandwiseBinaryClassifier is no longer work in progress
This commit is contained in:
parent
451f78f820
commit
c2860b0aed
@ -30,7 +30,7 @@ class BinaryMasksDataset(Dataset):
|
|||||||
self._labels = self._build_labels()
|
self._labels = self._build_labels()
|
||||||
self._wav_folder = self.data_root / 'wav'
|
self._wav_folder = self.data_root / 'wav'
|
||||||
self._wav_files = list(sorted(self._labels.keys()))
|
self._wav_files = list(sorted(self._labels.keys()))
|
||||||
self._mel_folder = self.data_root / 'transformed'
|
self._transformed_folder = self.data_root / 'transformed'
|
||||||
|
|
||||||
def _build_labels(self):
|
def _build_labels(self):
|
||||||
with open(Path(self.data_root) / 'lab' / 'labels.csv', mode='r') as f:
|
with open(Path(self.data_root) / 'lab' / 'labels.csv', mode='r') as f:
|
||||||
@ -51,13 +51,13 @@ class BinaryMasksDataset(Dataset):
|
|||||||
key = self._wav_files[item]
|
key = self._wav_files[item]
|
||||||
filename = key[:-4] + '.pik'
|
filename = key[:-4] + '.pik'
|
||||||
|
|
||||||
if not (self._mel_folder / filename).exists():
|
if not (self._transformed_folder / filename).exists():
|
||||||
raw_sample, sr = librosa.core.load(self._wav_folder / self._wav_files[item])
|
raw_sample, sr = librosa.core.load(self._wav_folder / self._wav_files[item])
|
||||||
transformed_sample = self._transforms(raw_sample)
|
transformed_sample = self._transforms(raw_sample)
|
||||||
self._mel_folder.mkdir(exist_ok=True, parents=True)
|
self._transformed_folder.mkdir(exist_ok=True, parents=True)
|
||||||
with (self._mel_folder / filename).open(mode='wb') as f:
|
with (self._transformed_folder / filename).open(mode='wb') as f:
|
||||||
pickle.dump(transformed_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
|
pickle.dump(transformed_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||||
with (self._mel_folder / filename).open(mode='rb') as f:
|
with (self._transformed_folder / filename).open(mode='rb') as f:
|
||||||
sample = pickle.load(f, fix_imports=True)
|
sample = pickle.load(f, fix_imports=True)
|
||||||
label = torch.as_tensor(self._labels[key], dtype=torch.float)
|
label = torch.as_tensor(self._labels[key], dtype=torch.float)
|
||||||
return sample, label
|
return sample, label
|
||||||
|
@ -13,11 +13,11 @@ from models.module_mixins import BaseOptimizerMixin, BaseTrainMixin, BaseValMixi
|
|||||||
|
|
||||||
|
|
||||||
class BandwiseBinaryClassifier(BaseModuleMixin_Dataloaders,
|
class BandwiseBinaryClassifier(BaseModuleMixin_Dataloaders,
|
||||||
BaseTrainMixin,
|
BaseTrainMixin,
|
||||||
BaseValMixin,
|
BaseValMixin,
|
||||||
BaseOptimizerMixin,
|
BaseOptimizerMixin,
|
||||||
LightningBaseModule
|
LightningBaseModule
|
||||||
):
|
):
|
||||||
|
|
||||||
def __init__(self, hparams):
|
def __init__(self, hparams):
|
||||||
super(BandwiseBinaryClassifier, self).__init__(hparams)
|
super(BandwiseBinaryClassifier, self).__init__(hparams)
|
||||||
@ -25,7 +25,7 @@ class BandwiseBinaryClassifier(BaseModuleMixin_Dataloaders,
|
|||||||
# Dataset and Dataloaders
|
# Dataset and Dataloaders
|
||||||
# =============================================================================
|
# =============================================================================
|
||||||
# Transforms
|
# Transforms
|
||||||
transforms = Compose([AudioToMel(), MelToImage(), ToTensor(), NormalizeLocal()])
|
transforms = Compose([AudioToMel(n_mels=32), MelToImage(), ToTensor(), NormalizeLocal()])
|
||||||
# Datasets
|
# Datasets
|
||||||
from datasets.binar_masks import BinaryMasksDataset
|
from datasets.binar_masks import BinaryMasksDataset
|
||||||
self.dataset = Namespace(
|
self.dataset = Namespace(
|
||||||
@ -44,33 +44,35 @@ class BandwiseBinaryClassifier(BaseModuleMixin_Dataloaders,
|
|||||||
self.criterion = nn.BCELoss()
|
self.criterion = nn.BCELoss()
|
||||||
self.n_band_sections = 5
|
self.n_band_sections = 5
|
||||||
|
|
||||||
# Utility Modules
|
# Modules
|
||||||
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
|
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
|
||||||
|
self.conv_dict = ModuleDict()
|
||||||
|
|
||||||
# Modules with Parameters
|
self.conv_dict.update({f"conv_1_{band_section}":
|
||||||
modules = {f"conv_1_{band_section}":
|
ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
|
||||||
ConvModule(self.in_shape, self.conv_filters[0], 3, conv_stride=2, **self.params.module_kwargs)
|
for band_section in range(self.n_band_sections)}
|
||||||
for band_section in range(self.n_band_sections)}
|
)
|
||||||
|
self.conv_dict.update({f"conv_2_{band_section}":
|
||||||
modules.update({f"conv_2_{band_section}":
|
ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
|
||||||
ConvModule(self.conv_1.shape, self.conv_filters[1], 3, conv_stride=2,
|
|
||||||
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
|
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
|
||||||
)
|
)
|
||||||
modules.update({f"conv_3_{band_section}":
|
self.conv_dict.update({f"conv_3_{band_section}":
|
||||||
ConvModule(self.conv_2.shape, self.conv_filters[2], 3, conv_stride=2,
|
ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
|
||||||
**self.params.module_kwargs)
|
**self.params.module_kwargs)
|
||||||
for band_section in range(self.n_band_sections)}
|
for band_section in range(self.n_band_sections)}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.merge = HorizontalMerger(self.conv_dict['conv_3_1'].shape, self.n_band_sections)
|
||||||
|
|
||||||
|
self.flat = Flatten(self.merge.shape)
|
||||||
|
|
||||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
|
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
|
||||||
|
|
||||||
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
|
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
|
||||||
|
|
||||||
# Utility Modules
|
# Utility Modules
|
||||||
self.merge = HorizontalMerger(self.split.shape, self.n_band_sections)
|
|
||||||
self.conv_dict = ModuleDict(modules=modules)
|
|
||||||
self.flat = Flatten(self.conv_3.shape)
|
|
||||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||||
self.activation = self.params.activation()
|
self.activation = self.params.activation()
|
||||||
self.sigmoid = nn.Sigmoid()
|
self.sigmoid = nn.Sigmoid()
|
||||||
@ -78,11 +80,11 @@ class BandwiseBinaryClassifier(BaseModuleMixin_Dataloaders,
|
|||||||
def forward(self, batch, **kwargs):
|
def forward(self, batch, **kwargs):
|
||||||
tensors = self.split(batch)
|
tensors = self.split(batch)
|
||||||
for idx, tensor in enumerate(tensors):
|
for idx, tensor in enumerate(tensors):
|
||||||
tensor[idx] = self.conv_dict[f"conv_1_{idx}"](tensor)
|
tensors[idx] = self.conv_dict[f"conv_1_{idx}"](tensor)
|
||||||
for idx, tensor in enumerate(tensors):
|
for idx, tensor in enumerate(tensors):
|
||||||
tensor[idx] = self.conv_dict[f"conv_2_{idx}"](tensor)
|
tensors[idx] = self.conv_dict[f"conv_2_{idx}"](tensor)
|
||||||
for idx, tensor in enumerate(tensors):
|
for idx, tensor in enumerate(tensors):
|
||||||
tensor[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
|
tensors[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
|
||||||
|
|
||||||
tensor = self.merge(tensors)
|
tensor = self.merge(tensors)
|
||||||
tensor = self.flat(tensor)
|
tensor = self.flat(tensor)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user