Debugging und hparam als Mapping
This commit is contained in:
parent
f607324606
commit
a3c9f7eac8
@ -3,7 +3,7 @@ from torch import nn
|
||||
from torch.optim import Adam
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import LightningBaseModule
|
||||
from ml_lib.modules.utils import LightningBaseModule, Flatten
|
||||
|
||||
|
||||
class BinaryClassifier(LightningBaseModule):
|
||||
@ -12,7 +12,7 @@ class BinaryClassifier(LightningBaseModule):
|
||||
return cls.__name__
|
||||
|
||||
def configure_optimizers(self):
|
||||
return Adam(lr=self.hparams.train.lr)
|
||||
return Adam(params=self.Parameters, lr=self.hparams.train.lr)
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
@ -38,14 +38,29 @@ class BinaryClassifier(LightningBaseModule):
|
||||
self.criterion = nn.BCELoss()
|
||||
|
||||
# Additional parameters
|
||||
self.in_shape = self.hparams.model_params.in_shape
|
||||
self.in_shape = self.hparams.in_shape
|
||||
|
||||
# Model Modules
|
||||
self.conv_1 = ConvModule(self.in_shape, 32, 5, conv_stride=4, **hparams.model_params)
|
||||
self.conv_2 = ConvModule(self.conv_1.shape, 64, 7, conv_stride=2, **hparams.model_params)
|
||||
self.conv_3 = ConvModule(self.conv_1.shape, 128, 9, conv_stride=2, **hparams.model_params)
|
||||
self.conv_1 = ConvModule(self.in_shape, 32, 5, conv_stride=4, **hparams)
|
||||
self.conv_2 = ConvModule(self.conv_1.shape, 64, 7, conv_stride=2, **hparams)
|
||||
self.conv_3 = ConvModule(self.conv_2.shape, 128, 9, conv_stride=2, **hparams)
|
||||
|
||||
self.flat = Flatten(self.conv_3.shape)
|
||||
self.full_1 = nn.Linear(self.flat.shape, 32)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2)
|
||||
|
||||
self.activation = self.hparams.activation()
|
||||
self.full_out = nn.Linear(self.full_2.out_features, 2)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensor = self.conv_1(batch)
|
||||
tensor = self.conv_2(tensor)
|
||||
tensor = self.conv_3(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return batch
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user