Audio Dataset

This commit is contained in:
Si11ium
2020-12-01 16:37:16 +01:00
parent 95561acc35
commit 95dcf22f3d
15 changed files with 468 additions and 145 deletions

View File

@@ -103,9 +103,9 @@ class BaseValMixin:
keys = list(output[0].keys())
ident = '' if output_idx == 0 else '_train'
summary_dict.update({f'mean{ident}_{key}': torch.mean(torch.stack([output[key]
for output in output]))
for key in keys if 'loss' in key}
)
for output in output]))
for key in keys if 'loss' in key}
)
# UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in output]) .cpu().numpy()
@@ -121,7 +121,45 @@ class BaseValMixin:
self.log(key, summary_dict[key])
class BinaryMaskDatasetMixin:
class BaseTestMixin:
absolute_loss = nn.L1Loss()
nll_loss = nn.NLLLoss()
bce_loss = nn.BCELoss()
def test_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
test_bce_loss = self.bce_loss(y.squeeze(), batch_y)
return dict(test_bce_loss=test_bce_loss,
batch_idx=batch_idx, y=y, batch_y=batch_y)
def test_epoch_end(self, outputs, *_, **__):
assert isinstance(self, LightningBaseModule)
summary_dict = dict()
keys = list(outputs[0].keys())
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
)
# UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
y_pred = (y_pred >= 0.5).astype(np.float32)
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
sample_weight=None, zero_division='warn')
uar_score = torch.as_tensor(uar_score)
summary_dict.update({f'uar_score': uar_score})
for key in summary_dict.keys():
self.log(key, summary_dict[key])
class DatasetMixin:
def build_dataset(self):
assert isinstance(self, LightningBaseModule)
@@ -159,21 +197,20 @@ class BinaryMaskDatasetMixin:
util_transforms])
# Datasets
from datasets.binar_masks import BinaryMasksDataset
dataset = Namespace(
**dict(
# TRAIN DATASET
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
train_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.train,
use_preprocessed=self.params.use_preprocessed,
stretch_dataset=self.params.stretch,
mel_transforms=mel_transforms_train, transforms=aug_transforms),
# VALIDATION DATASET
val_train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
val_train_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.train,
mel_transforms=mel_transforms, transforms=util_transforms),
val_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.devel,
val_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.devel,
mel_transforms=mel_transforms, transforms=util_transforms),
# TEST DATASET
test_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.test,
test_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.test,
mel_transforms=mel_transforms, transforms=util_transforms),
)
)
@@ -190,22 +227,23 @@ class BaseDataloadersMixin(ABC):
# sampler = RandomSampler(self.dataset.train_dataset, True, len(self.dataset.train_dataset))
sampler = None
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True if not sampler else None, sampler=sampler,
batch_size=self.params.batch_size,
batch_size=self.params.batch_size, pin_memory=True,
num_workers=self.params.worker)
# Test Dataloader
def test_dataloader(self):
assert isinstance(self, LightningBaseModule)
return DataLoader(dataset=self.dataset.test_dataset, shuffle=False,
batch_size=self.params.batch_size,
batch_size=self.params.batch_size, pin_memory=True,
num_workers=self.params.worker)
# Validation Dataloader
def val_dataloader(self):
assert isinstance(self, LightningBaseModule)
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=False,
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=False, pin_memory=True,
batch_size=self.params.batch_size, num_workers=self.params.worker)
train_dataloader = DataLoader(self.dataset.val_train_dataset, num_workers=self.params.worker,
pin_memory=True,
batch_size=self.params.batch_size, shuffle=False)
return [val_dataloader, train_dataloader]