Audio Dataset
This commit is contained in:
@@ -103,9 +103,9 @@ class BaseValMixin:
|
||||
keys = list(output[0].keys())
|
||||
ident = '' if output_idx == 0 else '_train'
|
||||
summary_dict.update({f'mean{ident}_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in output]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
for output in output]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in output]) .cpu().numpy()
|
||||
@@ -121,7 +121,45 @@ class BaseValMixin:
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
|
||||
class BinaryMaskDatasetMixin:
|
||||
class BaseTestMixin:
|
||||
|
||||
absolute_loss = nn.L1Loss()
|
||||
nll_loss = nn.NLLLoss()
|
||||
bce_loss = nn.BCELoss()
|
||||
|
||||
def test_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
test_bce_loss = self.bce_loss(y.squeeze(), batch_y)
|
||||
return dict(test_bce_loss=test_bce_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||
|
||||
def test_epoch_end(self, outputs, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
summary_dict = dict()
|
||||
|
||||
keys = list(outputs[0].keys())
|
||||
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
|
||||
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
uar_score = torch.as_tensor(uar_score)
|
||||
summary_dict.update({f'uar_score': uar_score})
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
|
||||
class DatasetMixin:
|
||||
|
||||
def build_dataset(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
@@ -159,21 +197,20 @@ class BinaryMaskDatasetMixin:
|
||||
util_transforms])
|
||||
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
# TRAIN DATASET
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
train_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
use_preprocessed=self.params.use_preprocessed,
|
||||
stretch_dataset=self.params.stretch,
|
||||
mel_transforms=mel_transforms_train, transforms=aug_transforms),
|
||||
# VALIDATION DATASET
|
||||
val_train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
val_train_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
mel_transforms=mel_transforms, transforms=util_transforms),
|
||||
val_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.devel,
|
||||
val_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.devel,
|
||||
mel_transforms=mel_transforms, transforms=util_transforms),
|
||||
# TEST DATASET
|
||||
test_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.test,
|
||||
test_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.test,
|
||||
mel_transforms=mel_transforms, transforms=util_transforms),
|
||||
)
|
||||
)
|
||||
@@ -190,22 +227,23 @@ class BaseDataloadersMixin(ABC):
|
||||
# sampler = RandomSampler(self.dataset.train_dataset, True, len(self.dataset.train_dataset))
|
||||
sampler = None
|
||||
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True if not sampler else None, sampler=sampler,
|
||||
batch_size=self.params.batch_size,
|
||||
batch_size=self.params.batch_size, pin_memory=True,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Test Dataloader
|
||||
def test_dataloader(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
return DataLoader(dataset=self.dataset.test_dataset, shuffle=False,
|
||||
batch_size=self.params.batch_size,
|
||||
batch_size=self.params.batch_size, pin_memory=True,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=False,
|
||||
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=False, pin_memory=True,
|
||||
batch_size=self.params.batch_size, num_workers=self.params.worker)
|
||||
|
||||
train_dataloader = DataLoader(self.dataset.val_train_dataset, num_workers=self.params.worker,
|
||||
pin_memory=True,
|
||||
batch_size=self.params.batch_size, shuffle=False)
|
||||
return [val_dataloader, train_dataloader]
|
||||
|
Reference in New Issue
Block a user