diff --git a/_paramters.py b/_paramters.py index c5d4785..36e2cc5 100644 --- a/_paramters.py +++ b/_paramters.py @@ -54,7 +54,7 @@ main_arg_parser.add_argument("--train_outpath", type=str, default="output", help main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="") # FIXME: Stochastic weight Avaraging is not good, maybe its my implementation? main_arg_parser.add_argument("--train_sto_weight_avg", type=strtobool, default=False, help="") -main_arg_parser.add_argument("--train_weight_decay", type=float, default=1e-7, help="") +main_arg_parser.add_argument("--train_weight_decay", type=float, default=1e-8, help="") main_arg_parser.add_argument("--train_opt_reset_interval", type=int, default=0, help="") main_arg_parser.add_argument("--train_epochs", type=int, default=51, help="") main_arg_parser.add_argument("--train_batch_size", type=int, default=300, help="") diff --git a/multi_run.py b/multi_run.py index b3cf957..207e681 100644 --- a/multi_run.py +++ b/multi_run.py @@ -25,19 +25,26 @@ if __name__ == '__main__': for model in ['CC', 'BCMC', 'BCC', 'RCC']: arg_dict.update(model_type=model) raw_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.0, - data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0) + data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0, + data_stretch=False) all_conf = dict(data_speed_factor=0.7, data_speed_ratio=0.2, data_mask_ratio=0.2, - data_noise_ratio=0.4, data_shift_ratio=0.4, data_loudness_ratio=0.4) + data_noise_ratio=0.4, data_shift_ratio=0.4, data_loudness_ratio=0.4, + data_stretch=True) speed_conf = dict(data_speed_factor=0.7, data_speed_ratio=0.2, data_mask_ratio=0.0, - data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0) + data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0, + data_stretch=True) mask_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.2, - data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0) + data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0, + data_stretch=True) noise_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.0, - data_noise_ratio=0.4, data_shift_ratio=0.0, data_loudness_ratio=0.0) + data_noise_ratio=0.4, data_shift_ratio=0.0, data_loudness_ratio=0.0, + data_stretch=True) shift_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.0, - data_noise_ratio=0.0, data_shift_ratio=0.4, data_loudness_ratio=0.0) + data_noise_ratio=0.0, data_shift_ratio=0.4, data_loudness_ratio=0.0, + data_stretch=True) loudness_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.0, - data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.4) + data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.4, + data_stretch=True) for dicts in [raw_conf, all_conf, speed_conf, mask_conf,noise_conf, shift_conf, loudness_conf]: