Parameter Adjustmens and Ensemble Model Implementation
This commit is contained in:
@ -1,6 +1,8 @@
|
||||
from ml_lib.utils.config import Config
|
||||
from models.binary_classifier import BinaryClassifier
|
||||
from models.bandwise_binary_classifier import BandwiseBinaryClassifier
|
||||
from models.conv_classifier import ConvClassifier
|
||||
from models.bandwise_conv_classifier import BandwiseConvClassifier
|
||||
from models.bandwise_conv_multihead_classifier import BandwiseConvMultiheadClassifier
|
||||
from models.ensemble import Ensemble
|
||||
|
||||
|
||||
class MConfig(Config):
|
||||
@ -8,5 +10,8 @@ class MConfig(Config):
|
||||
|
||||
@property
|
||||
def _model_map(self):
|
||||
return dict(BinaryClassifier=BinaryClassifier,
|
||||
BandwiseBinaryClassifier=BandwiseBinaryClassifier)
|
||||
return dict(ConvClassifier=ConvClassifier,
|
||||
BandwiseConvClassifier=BandwiseConvClassifier,
|
||||
BandwiseConvMultiheadClassifier=BandwiseConvMultiheadClassifier,
|
||||
Ensemble=Ensemble,
|
||||
)
|
||||
|
@ -1,11 +0,0 @@
|
||||
from pathlib import Path
|
||||
|
||||
from ml_lib.utils.logging import Logger
|
||||
|
||||
|
||||
class MLogger(Logger):
|
||||
|
||||
@property
|
||||
def outpath(self):
|
||||
# FIXME: Specify a special path
|
||||
return Path(self.config.train.outpath)
|
147
util/module_mixins.py
Normal file
147
util/module_mixins.py
Normal file
@ -0,0 +1,147 @@
|
||||
from collections import defaultdict
|
||||
|
||||
from abc import ABC
|
||||
from argparse import Namespace
|
||||
|
||||
import sklearn
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch.nn import L1Loss
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
from torchcontrib.optim import SWA
|
||||
from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, MelToImage, NormalizeLocal
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
|
||||
import variables as V
|
||||
|
||||
|
||||
class BaseOptimizerMixin:
|
||||
|
||||
def configure_optimizers(self):
|
||||
opt = Adam(params=self.parameters(), lr=self.params.lr)
|
||||
if self.params.sto_weight_avg:
|
||||
opt = SWA(opt, swa_start=10, swa_freq=5, swa_lr=0.05)
|
||||
return opt
|
||||
|
||||
def on_train_end(self):
|
||||
for opt in self.trainer.optimizers:
|
||||
if isinstance(opt, SWA):
|
||||
opt.swap_swa_sgd()
|
||||
|
||||
def on_epoch_end(self):
|
||||
if False: # FIXME: Pass a new parameter to model args.
|
||||
if self.current_epoch % self.params.opt_reset_interval == 0:
|
||||
for opt in self.trainer.optimizers:
|
||||
opt.state = defaultdict(dict)
|
||||
|
||||
|
||||
class BaseTrainMixin:
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
loss = self.criterion(y, batch_y)
|
||||
return dict(loss=loss)
|
||||
|
||||
def training_epoch_end(self, outputs):
|
||||
keys = list(outputs[0].keys())
|
||||
|
||||
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key})
|
||||
return summary_dict
|
||||
|
||||
|
||||
class BaseValMixin:
|
||||
|
||||
absolute_loss = L1Loss()
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
val_bce_loss = self.criterion(y, batch_y)
|
||||
val_abs_loss = self.absolute_loss(y, batch_y)
|
||||
return dict(val_bce_loss=val_bce_loss, val_abs_loss=val_abs_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y
|
||||
)
|
||||
|
||||
def validation_epoch_end(self, outputs):
|
||||
keys = list(outputs[0].keys())
|
||||
|
||||
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key})
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
|
||||
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
summary_dict['log'].update(uar_score=uar_score)
|
||||
return summary_dict
|
||||
|
||||
|
||||
class BinaryMaskDatasetFunction:
|
||||
|
||||
def build_dataset(self):
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
# Mel Transforms
|
||||
mel_transforms = Compose([
|
||||
# Audio to Mel Transformations
|
||||
AudioToMel(n_mels=self.params.n_mels), MelToImage()])
|
||||
# Data Augmentations
|
||||
aug_transforms = Compose([
|
||||
RandomApply([
|
||||
NoiseInjection(self.params.noise_ratio),
|
||||
LoudnessManipulator(self.params.loudness_ratio),
|
||||
ShiftTime(self.params.shift_ratio)], p=0.5),
|
||||
# Utility
|
||||
NormalizeLocal(), ToTensor()
|
||||
])
|
||||
val_transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train, mixup=self.params.mixup,
|
||||
mel_transforms=mel_transforms, transforms=aug_transforms),
|
||||
val_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.devel,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
test_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.test,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
)
|
||||
)
|
||||
return dataset
|
||||
|
||||
|
||||
class BaseDataloadersMixin(ABC):
|
||||
|
||||
# Dataloaders
|
||||
# ================================================================================
|
||||
# Train Dataloader
|
||||
def train_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Test Dataloader
|
||||
def test_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.test_dataset, shuffle=False,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
Reference in New Issue
Block a user