Parameter Adjustmens and Ensemble Model Implementation
This commit is contained in:
86
models/bandwise_conv_classifier.py
Normal file
86
models/bandwise_conv_classifier.py
Normal file
@@ -0,0 +1,86 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import ModuleDict, ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter,
|
||||
HorizontalMerger)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
|
||||
class BandwiseConvClassifier(BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(BandwiseConvClassifier, self).__init__(hparams)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
self.dataset = self.build_dataset()
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
self.n_band_sections = 4
|
||||
|
||||
# Modules
|
||||
# =============================================================================
|
||||
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
|
||||
self.conv_dict = ModuleDict()
|
||||
|
||||
self.conv_dict.update({f"conv_1_{band_section}":
|
||||
ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_2_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
|
||||
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_3_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
|
||||
**self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
|
||||
self.merge = HorizontalMerger(self.conv_dict['conv_3_1'].shape, self.n_band_sections)
|
||||
|
||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
|
||||
|
||||
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||
self.activation = self.params.activation()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensors = self.split(batch)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_1_{idx}"](tensor)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_2_{idx}"](tensor)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
|
||||
|
||||
tensor = self.merge(tensors)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return Namespace(main_out=tensor)
|
||||
Reference in New Issue
Block a user