LinearModule
This commit is contained in:
@ -14,6 +14,7 @@ from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, MelToImage, NormalizeLocal
|
||||
from ml_lib.modules.utils import LightningBaseModule
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
|
||||
import variables as V
|
||||
@ -22,6 +23,7 @@ import variables as V
|
||||
class BaseOptimizerMixin:
|
||||
|
||||
def configure_optimizers(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
opt = Adam(params=self.parameters(), lr=self.params.lr)
|
||||
if self.params.sto_weight_avg:
|
||||
opt = SWA(opt, swa_start=10, swa_freq=5, swa_lr=0.05)
|
||||
@ -33,7 +35,7 @@ class BaseOptimizerMixin:
|
||||
opt.swap_swa_sgd()
|
||||
|
||||
def on_epoch_end(self):
|
||||
if False: # FIXME: Pass a new parameter to model args.
|
||||
if self.params.opt_reset_interval:
|
||||
if self.current_epoch % self.params.opt_reset_interval == 0:
|
||||
for opt in self.trainer.optimizers:
|
||||
opt.state = defaultdict(dict)
|
||||
@ -42,6 +44,7 @@ class BaseOptimizerMixin:
|
||||
class BaseTrainMixin:
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
loss = self.criterion(y, batch_y)
|
||||
@ -60,7 +63,7 @@ class BaseValMixin:
|
||||
|
||||
absolute_loss = L1Loss()
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
def validation_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
val_bce_loss = self.criterion(y, batch_y)
|
||||
@ -69,52 +72,63 @@ class BaseValMixin:
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y
|
||||
)
|
||||
|
||||
def validation_epoch_end(self, outputs):
|
||||
keys = list(outputs[0].keys())
|
||||
def validation_epoch_end(self, outputs, *args, **kwargs):
|
||||
summary_dict = dict(log=dict())
|
||||
for output_idx, output in enumerate(outputs):
|
||||
keys = list(output[0].keys())
|
||||
ident = '' if output_idx == 0 else '_train'
|
||||
summary_dict['log'].update({f'mean{ident}_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in output]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key})
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in output]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in output]).squeeze().cpu().numpy()
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
summary_dict['log'].update(uar_score=uar_score)
|
||||
summary_dict['log'].update({f'uar{ident}_score': uar_score})
|
||||
return summary_dict
|
||||
|
||||
|
||||
class BinaryMaskDatasetFunction:
|
||||
|
||||
def build_dataset(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
# Mel Transforms
|
||||
mel_transforms = Compose([
|
||||
# Audio to Mel Transformations
|
||||
AudioToMel(n_mels=self.params.n_mels), MelToImage()])
|
||||
AudioToMel(sr=self.params.sr, n_mels=self.params.n_mels, n_fft=self.params.n_fft,
|
||||
hop_length=self.params.hop_length), MelToImage()])
|
||||
# Data Augmentations
|
||||
aug_transforms = Compose([
|
||||
RandomApply([
|
||||
NoiseInjection(self.params.noise_ratio),
|
||||
LoudnessManipulator(self.params.loudness_ratio),
|
||||
ShiftTime(self.params.shift_ratio)], p=0.5),
|
||||
NoiseInjection(self.params.noise_ratio),
|
||||
LoudnessManipulator(self.params.loudness_ratio),
|
||||
ShiftTime(self.params.shift_ratio)], p=0.5),
|
||||
# Utility
|
||||
NormalizeLocal(), ToTensor()
|
||||
])
|
||||
val_transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
|
||||
# sampler = RandomSampler(train_dataset, True, len(train_dataset)) if params['bootstrap'] else None
|
||||
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train, mixup=self.params.mixup,
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
mixup=self.params.mixup,
|
||||
mel_transforms=mel_transforms, transforms=aug_transforms),
|
||||
val_train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
val_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.devel,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
test_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.test,
|
||||
@ -142,6 +156,9 @@ class BaseDataloadersMixin(ABC):
|
||||
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size, num_workers=self.params.worker)
|
||||
|
||||
train_dataloader = DataLoader(self.dataset.val_train_dataset, num_workers=self.params.worker,
|
||||
batch_size=self.params.batch_size, shuffle=False)
|
||||
return [val_dataloader, train_dataloader]
|
||||
|
Reference in New Issue
Block a user