ResidualModule and New Parameters, Speed Manipulation
This commit is contained in:
parent
3fbc98dfa3
commit
28bfcfdce3
@ -25,37 +25,40 @@ main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True,
|
||||
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--data_n_mels", type=int, default=64, help="")
|
||||
main_arg_parser.add_argument("--data_sr", type=int, default=16000, help="")
|
||||
main_arg_parser.add_argument("--data_hop_length", type=int, default=62, help="")
|
||||
main_arg_parser.add_argument("--data_hop_length", type=int, default=256, help="")
|
||||
main_arg_parser.add_argument("--data_n_fft", type=int, default=512, help="")
|
||||
main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help="")
|
||||
|
||||
# Transformation Parameters
|
||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.2, help="")
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.4, help="")
|
||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.15, help="")
|
||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, help="")
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="")
|
||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="")
|
||||
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0, help="")
|
||||
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.5, help="")
|
||||
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="")
|
||||
|
||||
# Training Parameters
|
||||
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
||||
# FIXME: Stochastic weight Avaraging is not good, maybe its my implementation?
|
||||
main_arg_parser.add_argument("--train_sto_weight_avg", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--train_opt_reset_interval", type=int, default=300, help="")
|
||||
main_arg_parser.add_argument("--train_epochs", type=int, default=600, help="")
|
||||
main_arg_parser.add_argument("--train_sto_weight_avg", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--train_opt_reset_interval", type=int, default=0, help="")
|
||||
main_arg_parser.add_argument("--train_epochs", type=int, default=100, help="")
|
||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=250, help="")
|
||||
main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
|
||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||
|
||||
# Model Parameters
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="ConvClassifier", help="")
|
||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BandwiseConvMultiheadClassifier", help="")
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="CC", help="")
|
||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="CC", help="")
|
||||
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64, 128, 64]", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 256, 16]", help="")
|
||||
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=8, help="")
|
||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=128, help="")
|
||||
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_norm", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.0, help="")
|
||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.2, help="")
|
||||
|
||||
# Project Parameters
|
||||
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.name, help="")
|
||||
|
@ -19,7 +19,8 @@ class BinaryMasksDataset(Dataset):
|
||||
def sample_shape(self):
|
||||
return self[0][0].shape
|
||||
|
||||
def __init__(self, data_root, setting, mel_transforms, transforms=None, mixup=False):
|
||||
def __init__(self, data_root, setting, mel_transforms, transforms=None, mixup=False, stretch_dataset=True):
|
||||
self.stretch = stretch_dataset
|
||||
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
|
||||
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
|
||||
super(BinaryMasksDataset, self).__init__()
|
||||
@ -29,11 +30,11 @@ class BinaryMasksDataset(Dataset):
|
||||
self.mixup = mixup
|
||||
self.container_ext = '.pik'
|
||||
self._mel_transform = mel_transforms
|
||||
self._transforms = transforms or F_x()
|
||||
self._labels = self._build_labels()
|
||||
self._wav_folder = self.data_root / 'wav'
|
||||
self._wav_files = list(sorted(self._labels.keys()))
|
||||
self._mel_folder = self.data_root / 'mel'
|
||||
self._transforms = transforms or F_x(in_shape=None)
|
||||
|
||||
def _build_labels(self):
|
||||
with open(Path(self.data_root) / 'lab' / 'labels.csv', mode='r') as f:
|
||||
@ -45,6 +46,8 @@ class BinaryMasksDataset(Dataset):
|
||||
continue
|
||||
filename, label = row.strip().split(',')
|
||||
labeldict[filename] = self._to_label[label.lower()] if not self.setting == 'test' else filename
|
||||
if self.stretch:
|
||||
labeldict.update({f'X_{key}': val for key, val in labeldict.items()})
|
||||
return labeldict
|
||||
|
||||
def __len__(self):
|
||||
@ -52,7 +55,7 @@ class BinaryMasksDataset(Dataset):
|
||||
|
||||
def _compute_or_retrieve(self, filename):
|
||||
if not (self._mel_folder / (filename + self.container_ext)).exists():
|
||||
raw_sample, sr = librosa.core.load(self._wav_folder / (filename + '.wav'))
|
||||
raw_sample, sr = librosa.core.load(self._wav_folder / (filename.replace('X_', '') + '.wav'))
|
||||
mel_sample = self._mel_transform(raw_sample)
|
||||
self._mel_folder.mkdir(exist_ok=True, parents=True)
|
||||
with (self._mel_folder / (filename + self.container_ext)).open(mode='wb') as f:
|
||||
@ -65,8 +68,9 @@ class BinaryMasksDataset(Dataset):
|
||||
is_mixed = item >= len(self._labels)
|
||||
if is_mixed:
|
||||
item = item - len(self._labels)
|
||||
key = self._wav_files[item]
|
||||
filename = key[:-4]
|
||||
|
||||
key: str = list(self._labels.keys())[item]
|
||||
filename = key.replace('.wav', '')
|
||||
mel_sample = self._compute_or_retrieve(filename)
|
||||
label = self._labels[key]
|
||||
|
||||
|
@ -1,11 +1,10 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import ModuleDict, ModuleList
|
||||
from torch.nn import ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule, LinearModule
|
||||
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter,
|
||||
HorizontalMerger, F_x)
|
||||
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter, HorizontalMerger)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
@ -30,44 +29,39 @@ class BandwiseConvClassifier(BinaryMaskDatasetFunction,
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
self.n_band_sections = 4
|
||||
|
||||
# Modules
|
||||
# =============================================================================
|
||||
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
|
||||
self.conv_dict = ModuleDict()
|
||||
|
||||
self.conv_dict.update({f"conv_1_{band_section}":
|
||||
ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_2_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
|
||||
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_3_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
|
||||
**self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
k = 3
|
||||
self.band_list = ModuleList()
|
||||
for band in range(self.n_band_sections):
|
||||
last_shape = self.split.shape
|
||||
conv_list = ModuleList()
|
||||
for filters in self.conv_filters:
|
||||
conv_list.append(ConvModule(last_shape, filters, (k,k), conv_stride=(2, 2), conv_padding=2,
|
||||
**self.params.module_kwargs))
|
||||
last_shape = conv_list[-1].shape
|
||||
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
# last_shape = self.conv_list[-1].shape
|
||||
self.band_list.append(conv_list)
|
||||
|
||||
self.merge = HorizontalMerger(self.conv_dict['conv_3_1'].shape, self.n_band_sections)
|
||||
self.merge = HorizontalMerger(self.band_list[-1][-1].shape, self.n_band_sections)
|
||||
|
||||
self.full_1 = LinearModule(self.flat.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_1 = LinearModule(self.merge.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs)
|
||||
self.full_3 = LinearModule(self.full_2.shape, self.full_2.out_features // 2, **self.params.module_kwargs)
|
||||
self.full_3 = LinearModule(self.full_2.shape, self.full_2.shape // 2, **self.params.module_kwargs)
|
||||
|
||||
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensors = self.split(batch)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_1_{idx}"](tensor)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_2_{idx}"](tensor)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
|
||||
for idx, (tensor, convs) in enumerate(zip(tensors, self.band_list)):
|
||||
for conv in convs:
|
||||
tensor = conv(tensor)
|
||||
tensors[idx] = tensor
|
||||
|
||||
tensor = self.merge(tensors)
|
||||
tensor = self.full_1(tensor)
|
||||
|
@ -22,24 +22,32 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x)
|
||||
y, bands_y = y.main_out, y.bands
|
||||
bands_y_losses = [self.criterion(band_y, batch_y) for band_y in bands_y]
|
||||
bands_y_losses = [self.bce_loss(band_y, batch_y) for band_y in bands_y]
|
||||
return_dict = {f'band_{band_idx}_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)}
|
||||
overall_loss = self.criterion(y, batch_y)
|
||||
combined_loss = overall_loss + torch.stack(bands_y_losses).sum()
|
||||
return_dict.update(loss=combined_loss, overall_loss=overall_loss)
|
||||
|
||||
last_bce_loss = self.bce_loss(y, batch_y)
|
||||
return_dict.update(last_bce_loss=last_bce_loss)
|
||||
|
||||
bands_y_losses.append(last_bce_loss)
|
||||
combined_loss = torch.stack(bands_y_losses).mean()
|
||||
|
||||
return_dict.update(loss=combined_loss)
|
||||
return return_dict
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x)
|
||||
y, bands_y = y.main_out, y.bands
|
||||
bands_y_losses = [self.criterion(band_y, batch_y) for band_y in bands_y]
|
||||
bands_y_losses = [self.bce_loss(band_y, batch_y) for band_y in bands_y]
|
||||
return_dict = {f'band_{band_idx}_val_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)}
|
||||
overall_loss = self.criterion(y, batch_y)
|
||||
combined_loss = overall_loss + torch.stack(bands_y_losses).sum()
|
||||
|
||||
val_abs_loss = self.absolute_loss(y, batch_y)
|
||||
return_dict.update(val_bce_loss=combined_loss, val_abs_loss=val_abs_loss,
|
||||
last_bce_loss = self.bce_loss(y, batch_y)
|
||||
return_dict.update(last_bce_loss=last_bce_loss)
|
||||
|
||||
bands_y_losses.append(last_bce_loss)
|
||||
combined_loss = torch.stack(bands_y_losses).mean()
|
||||
|
||||
return_dict.update(val_bce_loss=combined_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y
|
||||
)
|
||||
return return_dict
|
||||
@ -56,7 +64,6 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
self.n_band_sections = 4
|
||||
k = 3 # Base Kernel Value
|
||||
|
||||
@ -69,7 +76,7 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
||||
last_shape = self.split.shape
|
||||
conv_list = ModuleList()
|
||||
for filters in self.conv_filters:
|
||||
conv_list.append(ConvModule(last_shape, filters, (k, k*4), conv_stride=(1, 2),
|
||||
conv_list.append(ConvModule(last_shape, filters, (k,k), conv_stride=(1, 1),
|
||||
**self.params.module_kwargs))
|
||||
last_shape = conv_list[-1].shape
|
||||
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
|
@ -29,23 +29,23 @@ class ConvClassifier(BinaryMaskDatasetFunction,
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
|
||||
# Modules with Parameters
|
||||
self.conv_list = ModuleList()
|
||||
last_shape = self.in_shape
|
||||
k = 3 # Base Kernel Value
|
||||
for filters in self.conv_filters:
|
||||
self.conv_list.append(ConvModule(last_shape, filters, (k, k*2), conv_stride=2, **self.params.module_kwargs))
|
||||
self.conv_list.append(ConvModule(last_shape, filters, (k,k), conv_stride=(2, 2), conv_padding=2,
|
||||
**self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
# last_shape = self.conv_list[-1].shape
|
||||
|
||||
self.full_1 = LinearModule(self.flat.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_2 = LinearModule(self.full_1.out_features, self.full_1.out_features * 2, self.params.bias)
|
||||
self.full_3 = LinearModule(self.full_2.out_features, self.full_2.out_features // 2, self.params.bias)
|
||||
self.full_1 = LinearModule(self.conv_list[-1].shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs)
|
||||
self.full_3 = LinearModule(self.full_2.shape, self.full_2.shape // 2, **self.params.module_kwargs)
|
||||
|
||||
self.full_out = LinearModule(self.full_3.out_features, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensor = batch
|
||||
|
64
models/residual_conv_classifier.py
Normal file
64
models/residual_conv_classifier.py
Normal file
@ -0,0 +1,64 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule, LinearModule, ResidualModule
|
||||
from ml_lib.modules.utils import LightningBaseModule
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
|
||||
class ResidualConvClassifier(BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(ResidualConvClassifier, self).__init__(hparams)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
self.dataset = self.build_dataset()
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
|
||||
# Modules with Parameters
|
||||
self.conv_list = ModuleList()
|
||||
last_shape = self.in_shape
|
||||
k = 3 # Base Kernel Value
|
||||
conv_module_params = self.params.module_kwargs
|
||||
conv_module_params.update(conv_kernel=(k, k), conv_stride=(1, 1), conv_padding=1)
|
||||
self.conv_list.append(ConvModule(last_shape, self.conv_filters[0], (k, k), conv_stride=(2, 2), conv_padding=1,
|
||||
**self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
for filters in self.conv_filters:
|
||||
conv_module_params.update(conv_filters=filters)
|
||||
self.conv_list.append(ResidualModule(last_shape, ConvModule, 3, **conv_module_params))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
self.conv_list.append(ConvModule(last_shape, filters, (k, k), conv_stride=(2, 2), conv_padding=2,
|
||||
**self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
|
||||
self.full_1 = LinearModule(self.conv_list[-1].shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs)
|
||||
self.full_3 = LinearModule(self.full_2.shape, self.full_2.shape // 2, **self.params.module_kwargs)
|
||||
|
||||
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensor = batch
|
||||
for conv in self.conv_list:
|
||||
tensor = conv(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.full_3(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
return Namespace(main_out=tensor)
|
@ -3,6 +3,7 @@ from models.conv_classifier import ConvClassifier
|
||||
from models.bandwise_conv_classifier import BandwiseConvClassifier
|
||||
from models.bandwise_conv_multihead_classifier import BandwiseConvMultiheadClassifier
|
||||
from models.ensemble import Ensemble
|
||||
from models.residual_conv_classifier import ResidualConvClassifier
|
||||
|
||||
|
||||
class MConfig(Config):
|
||||
@ -11,7 +12,13 @@ class MConfig(Config):
|
||||
@property
|
||||
def _model_map(self):
|
||||
return dict(ConvClassifier=ConvClassifier,
|
||||
CC=ConvClassifier,
|
||||
BandwiseConvClassifier=BandwiseConvClassifier,
|
||||
BCC=BandwiseConvClassifier,
|
||||
BandwiseConvMultiheadClassifier=BandwiseConvMultiheadClassifier,
|
||||
BCMC=BandwiseConvMultiheadClassifier,
|
||||
Ensemble=Ensemble,
|
||||
E=Ensemble,
|
||||
ResidualConvClassifier=ResidualConvClassifier,
|
||||
RCC=ResidualConvClassifier
|
||||
)
|
||||
|
@ -6,13 +6,14 @@ from argparse import Namespace
|
||||
import sklearn
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch.nn import L1Loss
|
||||
from torch import nn
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import DataLoader, RandomSampler
|
||||
from torchcontrib.optim import SWA
|
||||
from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime
|
||||
from ml_lib.audio_toolset.audio_augmentation import Speed
|
||||
from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime, MaskAug
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, MelToImage, NormalizeLocal
|
||||
from ml_lib.modules.utils import LightningBaseModule
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
@ -24,17 +25,19 @@ class BaseOptimizerMixin:
|
||||
|
||||
def configure_optimizers(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
opt = Adam(params=self.parameters(), lr=self.params.lr)
|
||||
opt = Adam(params=self.parameters(), lr=self.params.lr, weight_decay=0.04)
|
||||
if self.params.sto_weight_avg:
|
||||
opt = SWA(opt, swa_start=10, swa_freq=5, swa_lr=0.05)
|
||||
return opt
|
||||
|
||||
def on_train_end(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
for opt in self.trainer.optimizers:
|
||||
if isinstance(opt, SWA):
|
||||
opt.swap_swa_sgd()
|
||||
|
||||
def on_epoch_end(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
if self.params.opt_reset_interval:
|
||||
if self.current_epoch % self.params.opt_reset_interval == 0:
|
||||
for opt in self.trainer.optimizers:
|
||||
@ -43,14 +46,19 @@ class BaseOptimizerMixin:
|
||||
|
||||
class BaseTrainMixin:
|
||||
|
||||
absolute_loss = nn.L1Loss()
|
||||
nll_loss = nn.NLLLoss()
|
||||
bce_loss = nn.BCELoss()
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
loss = self.criterion(y, batch_y)
|
||||
return dict(loss=loss)
|
||||
bce_loss = self.bce_loss(y, batch_y)
|
||||
return dict(loss=bce_loss)
|
||||
|
||||
def training_epoch_end(self, outputs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
keys = list(outputs[0].keys())
|
||||
|
||||
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
@ -61,18 +69,20 @@ class BaseTrainMixin:
|
||||
|
||||
class BaseValMixin:
|
||||
|
||||
absolute_loss = L1Loss()
|
||||
absolute_loss = nn.L1Loss()
|
||||
nll_loss = nn.NLLLoss()
|
||||
bce_loss = nn.BCELoss()
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
val_bce_loss = self.criterion(y, batch_y)
|
||||
val_abs_loss = self.absolute_loss(y, batch_y)
|
||||
return dict(val_bce_loss=val_bce_loss, val_abs_loss=val_abs_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y
|
||||
)
|
||||
val_bce_loss = self.bce_loss(y, batch_y)
|
||||
return dict(val_bce_loss=val_bce_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||
|
||||
def validation_epoch_end(self, outputs, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
summary_dict = dict(log=dict())
|
||||
for output_idx, output in enumerate(outputs):
|
||||
keys = list(output[0].keys())
|
||||
@ -103,6 +113,12 @@ class BinaryMaskDatasetFunction:
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
# Mel Transforms
|
||||
mel_transforms_train = Compose([
|
||||
# Audio to Mel Transformations
|
||||
Speed(speed_factor=self.params.speed_factor, max_ratio=self.params.speed_ratio),
|
||||
AudioToMel(sr=self.params.sr, n_mels=self.params.n_mels, n_fft=self.params.n_fft,
|
||||
hop_length=self.params.hop_length),
|
||||
MelToImage()])
|
||||
mel_transforms = Compose([
|
||||
# Audio to Mel Transformations
|
||||
AudioToMel(sr=self.params.sr, n_mels=self.params.n_mels, n_fft=self.params.n_fft,
|
||||
@ -112,25 +128,28 @@ class BinaryMaskDatasetFunction:
|
||||
RandomApply([
|
||||
NoiseInjection(self.params.noise_ratio),
|
||||
LoudnessManipulator(self.params.loudness_ratio),
|
||||
ShiftTime(self.params.shift_ratio)], p=0.5),
|
||||
ShiftTime(self.params.shift_ratio),
|
||||
MaskAug(self.params.mask_ratio),
|
||||
], p=0.6),
|
||||
# Utility
|
||||
NormalizeLocal(), ToTensor()
|
||||
])
|
||||
val_transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
|
||||
# sampler = RandomSampler(train_dataset, True, len(train_dataset)) if params['bootstrap'] else None
|
||||
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
# TRAIN DATASET
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
mixup=self.params.mixup,
|
||||
mel_transforms=mel_transforms, transforms=aug_transforms),
|
||||
mel_transforms=mel_transforms_train, transforms=aug_transforms),
|
||||
# VALIDATION DATASET
|
||||
val_train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
val_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.devel,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
# TEST DATASET
|
||||
test_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.test,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
)
|
||||
@ -144,18 +163,23 @@ class BaseDataloadersMixin(ABC):
|
||||
# ================================================================================
|
||||
# Train Dataloader
|
||||
def train_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True,
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
# sampler = RandomSampler(self.dataset.train_dataset, True, len(self.dataset.train_dataset))
|
||||
sampler = None
|
||||
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True if not sampler else None, sampler=sampler,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Test Dataloader
|
||||
def test_dataloader(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
return DataLoader(dataset=self.dataset.test_dataset, shuffle=False,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size, num_workers=self.params.worker)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user