ensembles
This commit is contained in:
parent
e21143045a
commit
256e09a8b9
0
ensemble_methods/__init__.py
Normal file
0
ensemble_methods/__init__.py
Normal file
117
ensemble_methods/ensemble_checkpoints.py
Normal file
117
ensemble_methods/ensemble_checkpoints.py
Normal file
@ -0,0 +1,117 @@
|
||||
import csv
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
from sklearn import metrics
|
||||
from tqdm import tqdm
|
||||
|
||||
import numpy as np
|
||||
|
||||
from util.config import MConfig
|
||||
|
||||
|
||||
def accumulate_predictions(config_filename, output_folders):
|
||||
for output_folder in tqdm(output_folders, total=len(output_folders)):
|
||||
# Gather Predictions and labels
|
||||
inference_files = output_folder.glob('*.csv')
|
||||
|
||||
config = MConfig()
|
||||
config.read_file((output_folder.parent / config_filename).open('r'))
|
||||
|
||||
result_dict = defaultdict(list)
|
||||
for inf_idx, inference_file in enumerate(inference_files):
|
||||
with inference_file.open('r') as f:
|
||||
# Read Headers to skip the first line
|
||||
_ = f.readline()
|
||||
for row in f:
|
||||
prediction, label = [float(x) for x in row.strip().split(',')]
|
||||
result_dict[inference_file.name[:-4]].append(prediction)
|
||||
if inf_idx == 0:
|
||||
result_dict['labels'].append(label)
|
||||
result_dict = dict(result_dict)
|
||||
with (output_folder / Path(__file__).name[:-3]).open('wb') as f:
|
||||
pickle.dump(result_dict, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
pass
|
||||
|
||||
|
||||
def accumulate_uars(output_folders):
|
||||
for model_type in output_folders.iterdir():
|
||||
for param_config in model_type.iterdir():
|
||||
per_seed_ensemble_files = param_config.rglob(Path(__file__).name[:-3])
|
||||
|
||||
for ensemble_file in per_seed_ensemble_files:
|
||||
uar_dict = dict()
|
||||
with ensemble_file.open('rb') as f:
|
||||
loaded_ensemble_file = pickle.load(f)
|
||||
labels = loaded_ensemble_file.pop('labels')
|
||||
for decision_boundry in range(10, 91, 5):
|
||||
decision_boundry = round(decision_boundry * 0.01, 2)
|
||||
majority_votes = []
|
||||
mean_votes = []
|
||||
voters = len(loaded_ensemble_file.keys()) * 0.5
|
||||
for i in range(len(labels)):
|
||||
majority_vote = []
|
||||
mean_vote = []
|
||||
for key in loaded_ensemble_file.keys():
|
||||
majority_vote.append(loaded_ensemble_file[key][i] > decision_boundry)
|
||||
mean_vote.append(loaded_ensemble_file[key][i])
|
||||
mean_votes.append(int(sum(mean_vote) / len(loaded_ensemble_file.keys()) > decision_boundry))
|
||||
majority_votes.append(sum(majority_vote) > voters)
|
||||
|
||||
for predictions, name in zip([mean_votes, majority_votes], ['mean', 'majority']):
|
||||
|
||||
uar_score = metrics.recall_score(labels, predictions, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
uar_dict[f'{name}_decb_{decision_boundry}'] = uar_score
|
||||
with (ensemble_file.parent / 'ensemble_uar_dict_decb').open('wb') as ef:
|
||||
pickle.dump(uar_dict, ef, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
|
||||
def gather_results(config_filename, outpath):
|
||||
for model_type in outpath.iterdir():
|
||||
result_dict = defaultdict(list)
|
||||
for param_config in model_type.iterdir():
|
||||
tmp_uar_dict = defaultdict(list)
|
||||
config: MConfig
|
||||
for idx, version_uar in enumerate(param_config.rglob('uar_dict_decb')):
|
||||
if not idx:
|
||||
config = MConfig()
|
||||
config.read_file((version_uar.parent.parent / config_filename).open('r'))
|
||||
for parameter, value in config.model_paramters.items():
|
||||
if parameter in ['exp_path', 'exp_fingerprint', 'loudness_ratio', 'mask_ratio', 'noise_ratio',
|
||||
'shift_ratio', 'speed_amount', 'speed_max', 'speed_min']:
|
||||
result_dict[parameter].append(value)
|
||||
|
||||
with version_uar.open('rb') as f:
|
||||
loaded_uar_file = pickle.load(f)
|
||||
|
||||
for key in loaded_uar_file.keys():
|
||||
tmp_uar_dict[key].append(loaded_uar_file[key])
|
||||
for key, value in tmp_uar_dict.items():
|
||||
result_dict[f'{key}_mean'].append(np.mean(value))
|
||||
result_dict[f'{key}_std'].append(np.std(value))
|
||||
with (model_type / 'checkpoint_ensemble_results.csv').open('w') as f:
|
||||
headers = list(result_dict.keys())
|
||||
|
||||
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
|
||||
writer.writeheader() # write a header
|
||||
|
||||
for row_idx in range(len(result_dict['exp_path'])):
|
||||
writer.writerow({key: result_dict[key][row_idx] for key in headers})
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
outpath = Path().absolute().parent / 'output'
|
||||
|
||||
config_filename = 'config.ini'
|
||||
output_folders_path = list(outpath.rglob('outputs'))
|
||||
|
||||
# Accumulate the Predictions
|
||||
#accumulate_predictions(config_filename, output_folders_path)
|
||||
|
||||
# Accumulate the UARS
|
||||
accumulate_uars(outpath)
|
||||
|
||||
# Gather Results to final CSV
|
||||
#gather_results(config_filename, outpath)
|
92
ensemble_methods/global_inference.py
Normal file
92
ensemble_methods/global_inference.py
Normal file
@ -0,0 +1,92 @@
|
||||
from pathlib import Path
|
||||
from pickle import UnpicklingError
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
import variables as V
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import Speed
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
||||
|
||||
# Dataset and Dataloaders
|
||||
# =============================================================================
|
||||
|
||||
# Transforms
|
||||
from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime, MaskAug
|
||||
from ml_lib.utils.logging import Logger
|
||||
from ml_lib.utils.model_io import SavedLightningModels
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
from ml_lib.visualization.tools import Plotter
|
||||
from util.config import MConfig
|
||||
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
|
||||
|
||||
def prepare_dataloader(config_obj):
|
||||
mel_transforms = Compose([
|
||||
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||
hop_length=config_obj.data.hop_length),
|
||||
MelToImage()])
|
||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
"""
|
||||
aug_transforms = Compose([
|
||||
NoiseInjection(0.4),
|
||||
LoudnessManipulator(0.4),
|
||||
ShiftTime(0.3),
|
||||
MaskAug(0.2),
|
||||
NormalizeLocal(), ToTensor()
|
||||
])
|
||||
"""
|
||||
|
||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting=V.DATA_OPTIONS.devel,
|
||||
mel_transforms=mel_transforms, transforms=transforms
|
||||
)
|
||||
# noinspection PyTypeChecker
|
||||
return DataLoader(dataset, batch_size=config_obj.train.batch_size,
|
||||
num_workers=config_obj.data.worker if False else 0, shuffle=False)
|
||||
|
||||
|
||||
def restore_logger_and_model(log_dir, ckpt):
|
||||
model = SavedLightningModels.load_checkpoint(models_root_path=log_dir, checkpoint=ckpt)
|
||||
model = model.restore()
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
else:
|
||||
model.cpu()
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
outpath = Path('output')
|
||||
|
||||
config_filename = 'config.ini'
|
||||
for checkpoint in outpath.rglob('*.ckpt'):
|
||||
|
||||
inference_out = checkpoint.parent / 'outputs' / f'{checkpoint.name[:-5]}.csv'
|
||||
if inference_out.exists():
|
||||
continue
|
||||
inference_out.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
config = MConfig()
|
||||
config.read_file((checkpoint.parent / config_filename).open('r'))
|
||||
|
||||
devel_dataloader = prepare_dataloader(config)
|
||||
|
||||
try:
|
||||
loaded_model = restore_logger_and_model(checkpoint.parent, ckpt=checkpoint)
|
||||
loaded_model.eval()
|
||||
except UnpicklingError:
|
||||
continue
|
||||
with inference_out.open(mode='w') as outfile:
|
||||
outfile.write(f'file_name,prediction\n')
|
||||
|
||||
for batch in tqdm(devel_dataloader, total=len(devel_dataloader)):
|
||||
batch_x, batch_y = batch
|
||||
y = loaded_model(batch_x.to(device='cuda' if torch.cuda.is_available() else 'cpu')).main_out
|
||||
for prediction, label in zip(y, batch_y):
|
||||
outfile.write(f'{prediction.item()},{label.item()}\n')
|
||||
print('Done')
|
141
ensemble_methods/model_ensemble.py
Normal file
141
ensemble_methods/model_ensemble.py
Normal file
@ -0,0 +1,141 @@
|
||||
import csv
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from sklearn import metrics
|
||||
|
||||
|
||||
decision_boundrys = [round(x * 0.01, 2) for x in range(10, 90, 5)]
|
||||
|
||||
|
||||
def accumulate_uars(output_folders):
|
||||
for model_type in output_folders.iterdir():
|
||||
for param_config in model_type.iterdir():
|
||||
per_seed_ensemble_files = param_config.rglob('ensemble_checkpoints')
|
||||
for ensemble_file in per_seed_ensemble_files:
|
||||
uar_dict = dict()
|
||||
with ensemble_file.open('rb') as f:
|
||||
loaded_ensemble_file = pickle.load(f)
|
||||
labels = loaded_ensemble_file.pop('labels')
|
||||
for decision_boundry in decision_boundrys:
|
||||
decisions = []
|
||||
try:
|
||||
for i in range(len(labels)):
|
||||
decisions.append(loaded_ensemble_file['weights'][i] > decision_boundry)
|
||||
|
||||
uar_score = metrics.recall_score(labels, decisions, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
uar_dict[f'weights_decb_{decision_boundry}'] = uar_score
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
with (ensemble_file.parent / 'weights_uar_dict_decb').open('wb') as ef:
|
||||
pickle.dump(uar_dict, ef, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
|
||||
def accumulate_predictions_along_paramter_within_model(outpath):
|
||||
version_dicts = defaultdict(lambda: defaultdict(dict))
|
||||
labels = []
|
||||
labels_loaded = False
|
||||
for model_type in outpath.iterdir():
|
||||
if not model_type.is_dir():
|
||||
continue
|
||||
for parameter_configuration in model_type.iterdir():
|
||||
if not parameter_configuration.is_dir():
|
||||
continue
|
||||
for version in parameter_configuration.rglob('weights_uar_dict_decb'):
|
||||
try:
|
||||
with (version.parent / 'weights.csv').open('r') as f:
|
||||
predictions = []
|
||||
# Read Headers to skip the first line
|
||||
_ = f.readline()
|
||||
for row in f:
|
||||
prediction, label = [float(x) for x in row.strip().split(',')]
|
||||
predictions.append(prediction)
|
||||
if not labels_loaded:
|
||||
labels.append(label)
|
||||
if not labels_loaded:
|
||||
labels_loaded = True
|
||||
version_dicts[version.parent.parent.name][parameter_configuration.name.split('_')[1]][model_type.name] = dict(
|
||||
path=version,
|
||||
predictions=predictions)
|
||||
except KeyError:
|
||||
continue
|
||||
except FileNotFoundError:
|
||||
continue
|
||||
|
||||
result_dict = defaultdict(list)
|
||||
final_dict = dict()
|
||||
uar_dict = dict()
|
||||
|
||||
for decision_boundry in decision_boundrys:
|
||||
for i in range(len(labels)):
|
||||
for version_key, version_dict in version_dicts.items():
|
||||
for parameter_key, parameter_dict in version_dict.items():
|
||||
majority_votes = []
|
||||
mean_votes = []
|
||||
for model_type, model_dict in parameter_dict.items():
|
||||
majority_votes.append(model_dict['predictions'][i] > decision_boundry)
|
||||
mean_votes.append(model_dict['predictions'][i])
|
||||
result_dict[f'{parameter_key}_{decision_boundry}_mean_vote_pred_{version_key}'].append(
|
||||
int(sum(mean_votes) / len(mean_votes) > decision_boundry)
|
||||
)
|
||||
result_dict[f'{parameter_key}_{decision_boundry}_majority_vote_pred_{version_key}'].append(
|
||||
sum(majority_votes) > (len(majority_votes) // 2)
|
||||
)
|
||||
parameter_configurations = list(set([x.split('_')[0] for x in result_dict.keys()]))
|
||||
for vote in ['mean', 'majority']:
|
||||
for version_key, version_dict in version_dicts.items():
|
||||
for parameter_key, parameter_dict in version_dict.items():
|
||||
# for model_key, model_dict in parameter_dict.items():
|
||||
predictions = result_dict[f'{parameter_key}_{decision_boundry}_{vote}_vote_pred_{version_key}']
|
||||
uar_score = metrics.recall_score(labels, predictions, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
uar_dict[f'{parameter_key}_{decision_boundry}_{vote}_vote_pred_{version_key}'] = uar_score
|
||||
for parameter_key in parameter_configurations:
|
||||
final_dict[f'{parameter_key}_{decision_boundry}_{vote}_vote_mean_uar'] = np.mean([
|
||||
uar_dict[f'{parameter_key}_{decision_boundry}_{vote}_vote_pred_{version_key}']
|
||||
for version_key in version_dicts.keys()]
|
||||
)
|
||||
final_dict[f'{parameter_key}_{decision_boundry}_{vote}_vote_std_uar'] = np.std([
|
||||
uar_dict[f'{parameter_key}_{decision_boundry}_{vote}_vote_pred_{version_key}']
|
||||
for version_key in version_dicts.keys()]
|
||||
)
|
||||
|
||||
with (outpath / 'model_ensemble_uar_dict').open('wb') as f:
|
||||
pickle.dump(final_dict, f, pickle.HIGHEST_PROTOCOL)
|
||||
with (outpath / 'model_ensemble_uar_dict.csv').open('w') as f:
|
||||
headers = ['parameter_config', 'vote', 'decision_boundry', 'mean/std', 'value']
|
||||
|
||||
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
|
||||
writer.writeheader() # write a header
|
||||
|
||||
for result_key in final_dict.keys():
|
||||
splited_key = result_key.split('_')
|
||||
writer.writerow({key: value for key, value in
|
||||
zip(headers,
|
||||
[splited_key[0], splited_key[2], splited_key[1], splited_key[4],
|
||||
final_dict[result_key]])
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
outpath = Path().absolute().parent / 'output'
|
||||
|
||||
config_filename = 'config.ini'
|
||||
output_folders_path = list(outpath.rglob('outputs'))
|
||||
|
||||
# Accumulate the Predictions
|
||||
# accumulate_predictions(config_filename, output_folders_path)
|
||||
|
||||
# Accumulate the UARS
|
||||
# accumulate_uars(outpath)
|
||||
|
||||
# Find the Best UARS per paramter and Model and combine predictions
|
||||
accumulate_predictions_along_paramter_within_model(outpath)
|
||||
|
||||
# Gather Results to final CSV
|
||||
# gather_results(config_filename, outpath)
|
137
ensemble_methods/paramter_ensemble.py
Normal file
137
ensemble_methods/paramter_ensemble.py
Normal file
@ -0,0 +1,137 @@
|
||||
import csv
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
from sklearn import metrics
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
decision_boundrys = [round(x * 0.01, 2) for x in range(10, 90, 5)]
|
||||
|
||||
|
||||
def accumulate_uars(output_folders):
|
||||
for model_type in output_folders.iterdir():
|
||||
for param_config in model_type.iterdir():
|
||||
per_seed_ensemble_files = param_config.rglob('ensemble_checkpoints')
|
||||
for ensemble_file in per_seed_ensemble_files:
|
||||
uar_dict = dict()
|
||||
with ensemble_file.open('rb') as f:
|
||||
loaded_ensemble_file = pickle.load(f)
|
||||
labels = loaded_ensemble_file.pop('labels')
|
||||
for decision_boundry in decision_boundrys:
|
||||
decisions = []
|
||||
try:
|
||||
for i in range(len(labels)):
|
||||
decisions.append(loaded_ensemble_file['weights'][i] > decision_boundry)
|
||||
|
||||
uar_score = metrics.recall_score(labels, decisions, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
uar_dict[f'weights_decb_{decision_boundry}'] = uar_score
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
with (ensemble_file.parent / 'weights_uar_dict_decb').open('wb') as ef:
|
||||
pickle.dump(uar_dict, ef, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
|
||||
def accumulate_predictions_along_paramter_within_model(outpath):
|
||||
|
||||
for model_type in outpath.iterdir():
|
||||
version_dicts = defaultdict(dict)
|
||||
labels = []
|
||||
labels_loaded = False
|
||||
for parameter_configuration in model_type.iterdir():
|
||||
for version in parameter_configuration.rglob('weights_uar_dict_decb'):
|
||||
try:
|
||||
with (version.parent / 'weights.csv').open('r') as f:
|
||||
predictions = []
|
||||
# Read Headers to skip the first line
|
||||
_ = f.readline()
|
||||
for row in f:
|
||||
prediction, label = [float(x) for x in row.strip().split(',')]
|
||||
predictions.append(prediction)
|
||||
if not labels_loaded:
|
||||
labels.append(label)
|
||||
if not labels_loaded:
|
||||
labels_loaded = True
|
||||
version_dicts[version.parent.parent.name][parameter_configuration.name] = dict(
|
||||
path=version,
|
||||
predictions=predictions)
|
||||
except KeyError:
|
||||
continue
|
||||
except FileNotFoundError:
|
||||
continue
|
||||
|
||||
result_dict = defaultdict(list)
|
||||
final_dict = dict()
|
||||
uar_dict = dict()
|
||||
|
||||
for decision_boundry in decision_boundrys:
|
||||
for i in range(len(labels)):
|
||||
for version_key, version_dict in version_dicts.items():
|
||||
majority_votes = []
|
||||
mean_votes = []
|
||||
for parameter_key, parameter_dict in version_dict.items():
|
||||
majority_votes.append(parameter_dict['predictions'][i] > decision_boundry)
|
||||
mean_votes.append(parameter_dict['predictions'][i])
|
||||
result_dict[f'{decision_boundry}_mean_vote_pred_{version_key}'].append(
|
||||
int(sum(mean_votes) / len(mean_votes) > decision_boundry)
|
||||
)
|
||||
result_dict[f'{decision_boundry}_majority_vote_pred_{version_key}'].append(
|
||||
sum(majority_votes) > (len(majority_votes) // 2)
|
||||
)
|
||||
for vote in ['mean', 'majority']:
|
||||
for version_key, version_dict in version_dicts.items():
|
||||
|
||||
predictions = result_dict[f'{decision_boundry}_{vote}_vote_pred_{version_key}']
|
||||
uar_score = metrics.recall_score(labels, predictions, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
uar_dict[f'weights_decb_{decision_boundry}_{vote}_{version_key}_uar'] = uar_score
|
||||
|
||||
final_dict[f'weights_decb_{decision_boundry}_{vote}_vote_mean_uar'] = np.mean([
|
||||
uar_dict[f'weights_decb_{decision_boundry}_{vote}_{version_key}_uar']
|
||||
for version_key in version_dicts.keys()]
|
||||
)
|
||||
final_dict[f'weights_decb_{decision_boundry}_{vote}_vote_std_uar'] = np.std([
|
||||
uar_dict[f'weights_decb_{decision_boundry}_{vote}_{version_key}_uar']
|
||||
for version_key in version_dicts.keys()]
|
||||
)
|
||||
|
||||
with (model_type / 'parameter_ensemble_uar_dict').open('wb') as f:
|
||||
pickle.dump(final_dict, f, pickle.HIGHEST_PROTOCOL)
|
||||
with (model_type / 'parameter_ensemble_uar_dict.csv').open('w') as f:
|
||||
headers = ['model_type', 'vote', 'decision_boundry', 'mean/std', 'value']
|
||||
|
||||
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
|
||||
writer.writeheader() # write a header
|
||||
|
||||
for result_key in final_dict.keys():
|
||||
splited_key = result_key.split('_')
|
||||
writer.writerow({key: value for key, value in
|
||||
zip(headers,
|
||||
[model_type.name,
|
||||
splited_key[3], splited_key[2], splited_key[5],
|
||||
final_dict[result_key]])
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
outpath = Path().absolute().parent / 'output'
|
||||
|
||||
config_filename = 'config.ini'
|
||||
output_folders_path = list(outpath.rglob('outputs'))
|
||||
|
||||
# Accumulate the Predictions
|
||||
# accumulate_predictions(config_filename, output_folders_path)
|
||||
|
||||
# Accumulate the UARS
|
||||
# accumulate_uars(outpath)
|
||||
|
||||
# Find the Best UARS per paramter and Model and combine predictions
|
||||
accumulate_predictions_along_paramter_within_model(outpath)
|
||||
|
||||
# Gather Results to final CSV
|
||||
# gather_results(config_filename, outpath)
|
4
main.py
4
main.py
@ -118,11 +118,11 @@ def run_lightning_loop(config_obj):
|
||||
|
||||
from tqdm import tqdm
|
||||
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
|
||||
batch_x, file_name = batch
|
||||
batch_x, file_names = batch
|
||||
batch_x = batch_x.to(device='cuda' if model.on_gpu else 'cpu')
|
||||
y = model(batch_x).main_out
|
||||
predictions = (y >= 0.5).int()
|
||||
for prediction in predictions:
|
||||
for prediction, file_name in zip(predictions, file_names):
|
||||
prediction_text = 'clear' if prediction == V.CLEAR else 'mask'
|
||||
outfile.write(f'{file_name},{prediction_text}\n')
|
||||
return model
|
||||
|
Loading…
x
Reference in New Issue
Block a user