unlinken of already processed training files (seed dependent audio augmentation)

This commit is contained in:
steffen 2020-05-15 19:47:57 +02:00
parent 4a6b32d1dd
commit 192810bc58
3 changed files with 31 additions and 19 deletions

View File

@ -31,12 +31,12 @@ main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help
main_arg_parser.add_argument("--data_stretch", type=strtobool, default=True, help="")
# Transformation Parameters
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.4, help="") # 0.4
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.3, help="") # 0.3
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.4, help="") # 0.4
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0.2, help="") # 0.2
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="") # 0.3
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="") # 0.7
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, help="") # 0.4
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="") # 0.3
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="") # 0.4
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0, help="") # 0.2
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0, help="") # 0.3
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0, help="") # 0.7
# Training Parameters
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
@ -50,8 +50,8 @@ main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
# Model Parameters
main_arg_parser.add_argument("--model_type", type=str, default="BCMC", help="")
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BCMC", help="")
main_arg_parser.add_argument("--model_type", type=str, default="CC", help="")
main_arg_parser.add_argument("--model_secondary_type", type=str, default="CC", help="")
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")

View File

@ -7,6 +7,7 @@ import variables as V
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomApply
from ml_lib.audio_toolset.audio_augmentation import Speed
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
# Dataset and Dataloaders
@ -17,6 +18,7 @@ from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipu
from ml_lib.utils.logging import Logger
from ml_lib.utils.model_io import SavedLightningModels
from ml_lib.utils.transforms import ToTensor
from ml_lib.visualization.tools import Plotter
from util.config import MConfig
# Datasets
@ -25,23 +27,22 @@ from datasets.binar_masks import BinaryMasksDataset
def prepare_dataloader(config_obj):
mel_transforms = Compose([
# Audio to Mel Transformations
Speed(0, 0),
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
hop_length=config_obj.data.hop_length), MelToImage()])
hop_length=config_obj.data.hop_length),
MelToImage()])
transforms = Compose([NormalizeLocal(), ToTensor()])
aug_transforms = Compose([
RandomApply([
NoiseInjection(config_obj.data.noise_ratio),
LoudnessManipulator(config_obj.data.loudness_ratio),
ShiftTime(config_obj.data.shift_ratio),
MaskAug(config_obj.data.mask_ratio),
], p=0.6),
NoiseInjection(0.4),
LoudnessManipulator(0),
ShiftTime(0),
MaskAug(0),
# Utility
NormalizeLocal(), ToTensor()
])
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='train',
mel_transforms=mel_transforms, transforms=transforms
mel_transforms=mel_transforms, transforms=aug_transforms
)
# noinspection PyTypeChecker
return DataLoader(dataset, batch_size=None, num_workers=0, shuffle=False)
@ -69,6 +70,12 @@ if __name__ == '__main__':
config = MConfig()
config.read_file((outpath / model_type / parameters / version / config_filename).open('r'))
test_dataloader = prepare_dataloader(config)
p = Plotter(outpath)
from matplotlib import pyplot as plt
d = test_dataloader.dataset[0][0].squeeze()
plt.imshow(d)
loaded_model = restore_logger_and_model(config)
loaded_model.eval()

View File

@ -12,6 +12,8 @@ config_file_name = 'config.ini'
if __name__ == '__main__':
for model_path in outpath.iterdir():
if not model_path.is_dir():
continue
out_file = (model_path / metric_file_name)
for paramter_configuration in model_path.iterdir():
uar_scores = defaultdict(list)
@ -46,5 +48,8 @@ if __name__ == '__main__':
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
if not file_existed:
writer.writeheader() # file doesn't exist yet, write a header
try:
for row_idx in range(len(uar_scores['mean'])):
writer.writerow({key: uar_scores[key][row_idx] for key in headers})
except IndexError:
print('could not read: ')