unlinken of already processed training files (seed dependent audio augmentation)
This commit is contained in:
parent
4a6b32d1dd
commit
192810bc58
@ -31,12 +31,12 @@ main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help
|
|||||||
main_arg_parser.add_argument("--data_stretch", type=strtobool, default=True, help="")
|
main_arg_parser.add_argument("--data_stretch", type=strtobool, default=True, help="")
|
||||||
|
|
||||||
# Transformation Parameters
|
# Transformation Parameters
|
||||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.4, help="") # 0.4
|
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, help="") # 0.4
|
||||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.3, help="") # 0.3
|
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="") # 0.3
|
||||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.4, help="") # 0.4
|
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="") # 0.4
|
||||||
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0.2, help="") # 0.2
|
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0, help="") # 0.2
|
||||||
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="") # 0.3
|
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0, help="") # 0.3
|
||||||
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="") # 0.7
|
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0, help="") # 0.7
|
||||||
|
|
||||||
# Training Parameters
|
# Training Parameters
|
||||||
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||||
@ -50,8 +50,8 @@ main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
|
|||||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||||
|
|
||||||
# Model Parameters
|
# Model Parameters
|
||||||
main_arg_parser.add_argument("--model_type", type=str, default="BCMC", help="")
|
main_arg_parser.add_argument("--model_type", type=str, default="CC", help="")
|
||||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BCMC", help="")
|
main_arg_parser.add_argument("--model_secondary_type", type=str, default="CC", help="")
|
||||||
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||||
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")
|
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")
|
||||||
|
@ -7,6 +7,7 @@ import variables as V
|
|||||||
from torch.utils.data import DataLoader, Dataset
|
from torch.utils.data import DataLoader, Dataset
|
||||||
from torchvision.transforms import Compose, RandomApply
|
from torchvision.transforms import Compose, RandomApply
|
||||||
|
|
||||||
|
from ml_lib.audio_toolset.audio_augmentation import Speed
|
||||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
||||||
|
|
||||||
# Dataset and Dataloaders
|
# Dataset and Dataloaders
|
||||||
@ -17,6 +18,7 @@ from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipu
|
|||||||
from ml_lib.utils.logging import Logger
|
from ml_lib.utils.logging import Logger
|
||||||
from ml_lib.utils.model_io import SavedLightningModels
|
from ml_lib.utils.model_io import SavedLightningModels
|
||||||
from ml_lib.utils.transforms import ToTensor
|
from ml_lib.utils.transforms import ToTensor
|
||||||
|
from ml_lib.visualization.tools import Plotter
|
||||||
from util.config import MConfig
|
from util.config import MConfig
|
||||||
|
|
||||||
# Datasets
|
# Datasets
|
||||||
@ -25,23 +27,22 @@ from datasets.binar_masks import BinaryMasksDataset
|
|||||||
|
|
||||||
def prepare_dataloader(config_obj):
|
def prepare_dataloader(config_obj):
|
||||||
mel_transforms = Compose([
|
mel_transforms = Compose([
|
||||||
# Audio to Mel Transformations
|
Speed(0, 0),
|
||||||
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||||
hop_length=config_obj.data.hop_length), MelToImage()])
|
hop_length=config_obj.data.hop_length),
|
||||||
|
MelToImage()])
|
||||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||||
aug_transforms = Compose([
|
aug_transforms = Compose([
|
||||||
RandomApply([
|
NoiseInjection(0.4),
|
||||||
NoiseInjection(config_obj.data.noise_ratio),
|
LoudnessManipulator(0),
|
||||||
LoudnessManipulator(config_obj.data.loudness_ratio),
|
ShiftTime(0),
|
||||||
ShiftTime(config_obj.data.shift_ratio),
|
MaskAug(0),
|
||||||
MaskAug(config_obj.data.mask_ratio),
|
|
||||||
], p=0.6),
|
|
||||||
# Utility
|
# Utility
|
||||||
NormalizeLocal(), ToTensor()
|
NormalizeLocal(), ToTensor()
|
||||||
])
|
])
|
||||||
|
|
||||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='train',
|
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='train',
|
||||||
mel_transforms=mel_transforms, transforms=transforms
|
mel_transforms=mel_transforms, transforms=aug_transforms
|
||||||
)
|
)
|
||||||
# noinspection PyTypeChecker
|
# noinspection PyTypeChecker
|
||||||
return DataLoader(dataset, batch_size=None, num_workers=0, shuffle=False)
|
return DataLoader(dataset, batch_size=None, num_workers=0, shuffle=False)
|
||||||
@ -69,6 +70,12 @@ if __name__ == '__main__':
|
|||||||
config = MConfig()
|
config = MConfig()
|
||||||
config.read_file((outpath / model_type / parameters / version / config_filename).open('r'))
|
config.read_file((outpath / model_type / parameters / version / config_filename).open('r'))
|
||||||
test_dataloader = prepare_dataloader(config)
|
test_dataloader = prepare_dataloader(config)
|
||||||
|
p = Plotter(outpath)
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
d = test_dataloader.dataset[0][0].squeeze()
|
||||||
|
plt.imshow(d)
|
||||||
|
|
||||||
loaded_model = restore_logger_and_model(config)
|
loaded_model = restore_logger_and_model(config)
|
||||||
loaded_model.eval()
|
loaded_model.eval()
|
||||||
|
|
||||||
|
@ -12,6 +12,8 @@ config_file_name = 'config.ini'
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
for model_path in outpath.iterdir():
|
for model_path in outpath.iterdir():
|
||||||
|
if not model_path.is_dir():
|
||||||
|
continue
|
||||||
out_file = (model_path / metric_file_name)
|
out_file = (model_path / metric_file_name)
|
||||||
for paramter_configuration in model_path.iterdir():
|
for paramter_configuration in model_path.iterdir():
|
||||||
uar_scores = defaultdict(list)
|
uar_scores = defaultdict(list)
|
||||||
@ -46,5 +48,8 @@ if __name__ == '__main__':
|
|||||||
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
|
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
|
||||||
if not file_existed:
|
if not file_existed:
|
||||||
writer.writeheader() # file doesn't exist yet, write a header
|
writer.writeheader() # file doesn't exist yet, write a header
|
||||||
for row_idx in range(len(uar_scores['mean'])):
|
try:
|
||||||
writer.writerow({key: uar_scores[key][row_idx] for key in headers})
|
for row_idx in range(len(uar_scores['mean'])):
|
||||||
|
writer.writerow({key: uar_scores[key][row_idx] for key in headers})
|
||||||
|
except IndexError:
|
||||||
|
print('could not read: ')
|
Loading…
x
Reference in New Issue
Block a user