mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 15:26:43 +02:00
82 lines
3.2 KiB
Python
82 lines
3.2 KiB
Python
import random
|
|
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from environments import helpers as h
|
|
|
|
|
|
class BaseFactory:
|
|
|
|
def __init__(self, level='simple', n_agents=1, max_steps=1e3):
|
|
self.n_agents = n_agents
|
|
self.max_steps = max_steps
|
|
self.level = h.one_hot_level(
|
|
h.parse_level(Path(__file__).parent / h.LEVELS_DIR / f'{level}.txt')
|
|
)
|
|
self.slice_strings = {0: 'level', **{i: f'agent#{i}' for i in range(1, self.n_agents+1)}}
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.done = False
|
|
self.steps = 0
|
|
# Agent placement ...
|
|
agents = np.zeros((self.n_agents, *self.level.shape), dtype=np.int8)
|
|
floor_tiles = np.argwhere(self.level == h.IS_FREE_CELL)
|
|
# ... on random positions
|
|
np.random.shuffle(floor_tiles)
|
|
for i, (x, y) in enumerate(floor_tiles[:self.n_agents]):
|
|
agents[i, x, y] = h.IS_OCCUPIED_CELL
|
|
# state.shape = level, agent 1,..., agent n,
|
|
self.state = np.concatenate((np.expand_dims(self.level, axis=0), agents), axis=0)
|
|
# Returns State, Reward, Done, Info
|
|
return self.state, 0, self.done, {}
|
|
|
|
def step(self, actions):
|
|
actions = [actions] if isinstance(actions, int) else actions
|
|
assert isinstance(actions, list), f'"actions has to be in [{int, list}]'
|
|
self.steps += 1
|
|
r = 0
|
|
|
|
collision_vecs = np.zeros((self.n_agents, self.state.shape[0])) # n_agents x n_slices
|
|
actions = list(enumerate(actions))
|
|
random.shuffle(actions)
|
|
|
|
for agent_i, action in actions:
|
|
new_pos, collision_vec, did_collide = self.move_or_colide(agent_i, action)
|
|
collision_vecs[agent_i] = collision_vec
|
|
|
|
reward, info = self.step_core(collision_vecs, actions, r)
|
|
r += reward
|
|
if self.steps >= self.max_steps:
|
|
self.done = True
|
|
return self.state, r, self.done, info
|
|
|
|
def move(self, agent_i, old_pos, new_pos):
|
|
(x, y), (x_new, y_new) = old_pos, new_pos
|
|
self.state[agent_i + h.AGENT_START_IDX, x, y] = h.IS_FREE_CELL
|
|
self.state[agent_i + h.AGENT_START_IDX, x_new, y_new] = h.IS_OCCUPIED_CELL
|
|
|
|
def move_or_colide(self, agent_i, action) -> ((int, int), bool):
|
|
old_pos, new_pos, collision_vec, did_collide = h.check_agent_move(state=self.state,
|
|
dim=agent_i + h.AGENT_START_IDX,
|
|
action=action)
|
|
if not did_collide:
|
|
# Does not collide width level boundrys
|
|
self.move(agent_i, old_pos, new_pos)
|
|
return new_pos, collision_vec, did_collide
|
|
else:
|
|
# Agent seems to be trying to collide in this step
|
|
return old_pos, collision_vec, did_collide
|
|
|
|
@property
|
|
def free_cells(self) -> np.ndarray:
|
|
free_cells = self.state.sum(0)
|
|
free_cells = np.argwhere(free_cells == h.IS_FREE_CELL)
|
|
np.random.shuffle(free_cells)
|
|
return free_cells
|
|
|
|
def step_core(self, collisions_vec, actions, r):
|
|
# Returns: Reward, Info
|
|
# Set to "raise NotImplementedError"
|
|
return 0, {} # What is returned here?
|