2021-06-02 09:17:51 +02:00

79 lines
2.8 KiB
Python

import pickle
import warnings
from typing import Union
from os import PathLike
from pathlib import Path
import time
import pandas as pd
from stable_baselines3.common.callbacks import CallbackList
from environments.factory.simple_factory import DirtProperties, SimpleFactory
from environments.helpers import IGNORED_DF_COLUMNS
from environments.logging.monitor import MonitorCallback
from environments.logging.plotting import prepare_plot
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
def combine_runs(run_path: Union[str, PathLike]):
run_path = Path(run_path)
df_list = list()
for run, monitor_file in enumerate(run_path.rglob('monitor_*.pick')):
with monitor_file.open('rb') as f:
monitor_df = pickle.load(f)
monitor_df['run'] = run
monitor_df = monitor_df.fillna(0)
df_list.append(monitor_df)
df = pd.concat(df_list, ignore_index=True)
df = df.fillna(0).rename(columns={'episode': 'Episode', 'run': 'Run'})
columns = [col for col in df.columns if col not in IGNORED_DF_COLUMNS]
non_overlapp_window = df.groupby(['Run', df['Episode'] // 20]).mean()
df_melted = non_overlapp_window[columns].reset_index().melt(id_vars=['Episode', 'Run'],
value_vars=columns, var_name="Measurement",
value_name="Score")
prepare_plot(run_path / f'{run_path.name}_monitor_lineplot.png', df_melted)
print('Plotting done.')
if __name__ == '__main__':
from stable_baselines3 import PPO, DQN, A2C
dirt_props = DirtProperties()
time_stamp = int(time.time())
out_path = None
for modeL_type in [A2C, PPO, DQN]:
for seed in range(5):
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props, pomdp_radius=2, max_steps=400,
allow_diagonal_movement=False, allow_no_op=False, verbose=False)
model = modeL_type("MlpPolicy", env, verbose=1, seed=seed, device='cpu')
out_path = Path('debug_out') / f'{model.__class__.__name__}_{time_stamp}'
identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
out_path /= identifier
callbacks = CallbackList(
[MonitorCallback(env, filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
)
model.learn(total_timesteps=int(2e5), callback=callbacks)
save_path = out_path / f'model_{identifier}.zip'
save_path.parent.mkdir(parents=True, exist_ok=True)
model.save(save_path)
env.save_params(out_path.parent / f'env_{model.__class__.__name__}_{time_stamp}.pick')
if out_path:
combine_runs(out_path.parent)