mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-22 14:56:43 +02:00
85 lines
2.6 KiB
Python
85 lines
2.6 KiB
Python
import torch
|
|
import numpy as np
|
|
import yaml
|
|
from pathlib import Path
|
|
|
|
|
|
def load_class(classname):
|
|
from importlib import import_module
|
|
module_path, class_name = classname.rsplit(".", 1)
|
|
module = import_module(module_path)
|
|
c = getattr(module, class_name)
|
|
return c
|
|
|
|
|
|
def instantiate_class(arguments):
|
|
from importlib import import_module
|
|
|
|
d = dict(arguments)
|
|
classname = d["classname"]
|
|
del d["classname"]
|
|
module_path, class_name = classname.rsplit(".", 1)
|
|
module = import_module(module_path)
|
|
c = getattr(module, class_name)
|
|
return c(**d)
|
|
|
|
|
|
def get_class(arguments):
|
|
from importlib import import_module
|
|
|
|
if isinstance(arguments, dict):
|
|
classname = arguments["classname"]
|
|
module_path, class_name = classname.rsplit(".", 1)
|
|
module = import_module(module_path)
|
|
c = getattr(module, class_name)
|
|
return c
|
|
else:
|
|
classname = arguments.classname
|
|
module_path, class_name = classname.rsplit(".", 1)
|
|
module = import_module(module_path)
|
|
c = getattr(module, class_name)
|
|
return c
|
|
|
|
|
|
def get_arguments(arguments):
|
|
from importlib import import_module
|
|
d = dict(arguments)
|
|
if "classname" in d:
|
|
del d["classname"]
|
|
return d
|
|
|
|
|
|
def load_yaml_file(path: Path):
|
|
with path.open() as stream:
|
|
cfg = yaml.load(stream, Loader=yaml.FullLoader)
|
|
return cfg
|
|
|
|
|
|
def add_env_props(cfg):
|
|
env = instantiate_class(cfg['environment'].copy())
|
|
cfg['agent'].update(dict(observation_size=list(env.observation_space.shape),
|
|
n_actions=env.action_space.n))
|
|
|
|
|
|
class Checkpointer(object):
|
|
def __init__(self, experiment_name, root, config, total_steps, n_checkpoints):
|
|
self.path = root / experiment_name
|
|
self.checkpoint_indices = list(np.linspace(1, total_steps, n_checkpoints, dtype=int) - 1)
|
|
self.__current_checkpoint = 0
|
|
self.__current_step = 0
|
|
self.path.mkdir(exist_ok=True, parents=True)
|
|
with (self.path / 'config.yaml').open('w') as outfile:
|
|
yaml.dump(config, outfile, default_flow_style=False)
|
|
|
|
def save_experiment(self, name: str, model):
|
|
cpt_path = self.path / f'checkpoint_{self.__current_checkpoint}'
|
|
cpt_path.mkdir(exist_ok=True, parents=True)
|
|
torch.save(model.state_dict(), cpt_path / f'{name}.pt')
|
|
|
|
def step(self, to_save):
|
|
if self.__current_step in self.checkpoint_indices:
|
|
print(f'Checkpointing #{self.__current_checkpoint}')
|
|
for name, model in to_save:
|
|
self.save_experiment(name, model)
|
|
self.__current_checkpoint += 1
|
|
self.__current_step += 1 |