2023-06-20 18:21:43 +02:00

60 lines
2.3 KiB
Python

import numpy as np
from mfg_package.algorithms.static.TSP_base_agent import TSPBaseAgent
from mfg_package.modules.items import constants as i
future_planning = 7
inventory_size = 3
MODE_GET = 'Mode_Get'
MODE_BRING = 'Mode_Bring'
class TSPItemAgent(TSPBaseAgent):
def __init__(self, *args, mode=MODE_GET, **kwargs):
super(TSPItemAgent, self).__init__(*args, **kwargs)
self.mode = mode
def predict(self, *_, **__):
if self._env.state[i.ITEM].by_pos(self.state.pos) is not None:
# Translate the action_object to an integer to have the same output as any other model
action = i.ITEM_ACTION
elif self._env.state[i.DROP_OFF].by_pos(self.state.pos) is not None:
# Translate the action_object to an integer to have the same output as any other model
action = i.ITEM_ACTION
elif door := self._door_is_close():
action = self._use_door_or_move(door, i.DROP_OFF if self.mode == MODE_BRING else i.ITEM)
else:
action = self._choose()
# Translate the action_object to an integer to have the same output as any other model
try:
action_obj = next(action_i for action_i, a in enumerate(self.state.actions) if a.name == action)
except (StopIteration, UnboundLocalError):
print('Will not happen')
raise EnvironmentError
# noinspection PyUnboundLocalVariable
if self.mode == MODE_BRING and len(self._env[i.INVENTORY].by_entity(self.state)):
pass
elif self.mode == MODE_BRING and not len(self._env[i.INVENTORY].by_entity(self.state)):
self.mode = MODE_GET
elif self.mode == MODE_GET and len(self._env[i.INVENTORY].by_entity(self.state)) > inventory_size:
self.mode = MODE_BRING
else:
pass
return action_obj
def _choose(self):
target = i.DROP_OFF if self.mode == MODE_BRING else i.ITEM
if len(self._env.state[i.ITEM]) >= 1:
action = self._predict_move(target)
elif len(self._env[i.INVENTORY].by_entity(self.state)):
self.mode = MODE_BRING
action = self._predict_move(target)
else:
action = int(np.random.randint(self._env.action_space.n))
# noinspection PyUnboundLocalVariable
return action