mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-22 14:56:43 +02:00
60 lines
2.3 KiB
Python
60 lines
2.3 KiB
Python
import numpy as np
|
|
|
|
from mfg_package.algorithms.static.TSP_base_agent import TSPBaseAgent
|
|
|
|
from mfg_package.modules.items import constants as i
|
|
|
|
future_planning = 7
|
|
inventory_size = 3
|
|
|
|
MODE_GET = 'Mode_Get'
|
|
MODE_BRING = 'Mode_Bring'
|
|
|
|
|
|
class TSPItemAgent(TSPBaseAgent):
|
|
|
|
def __init__(self, *args, mode=MODE_GET, **kwargs):
|
|
super(TSPItemAgent, self).__init__(*args, **kwargs)
|
|
self.mode = mode
|
|
|
|
def predict(self, *_, **__):
|
|
if self._env.state[i.ITEM].by_pos(self.state.pos) is not None:
|
|
# Translate the action_object to an integer to have the same output as any other model
|
|
action = i.ITEM_ACTION
|
|
elif self._env.state[i.DROP_OFF].by_pos(self.state.pos) is not None:
|
|
# Translate the action_object to an integer to have the same output as any other model
|
|
action = i.ITEM_ACTION
|
|
elif door := self._door_is_close():
|
|
action = self._use_door_or_move(door, i.DROP_OFF if self.mode == MODE_BRING else i.ITEM)
|
|
else:
|
|
action = self._choose()
|
|
# Translate the action_object to an integer to have the same output as any other model
|
|
try:
|
|
action_obj = next(action_i for action_i, a in enumerate(self.state.actions) if a.name == action)
|
|
except (StopIteration, UnboundLocalError):
|
|
print('Will not happen')
|
|
raise EnvironmentError
|
|
# noinspection PyUnboundLocalVariable
|
|
if self.mode == MODE_BRING and len(self._env[i.INVENTORY].by_entity(self.state)):
|
|
pass
|
|
elif self.mode == MODE_BRING and not len(self._env[i.INVENTORY].by_entity(self.state)):
|
|
self.mode = MODE_GET
|
|
elif self.mode == MODE_GET and len(self._env[i.INVENTORY].by_entity(self.state)) > inventory_size:
|
|
self.mode = MODE_BRING
|
|
else:
|
|
pass
|
|
return action_obj
|
|
|
|
def _choose(self):
|
|
target = i.DROP_OFF if self.mode == MODE_BRING else i.ITEM
|
|
if len(self._env.state[i.ITEM]) >= 1:
|
|
action = self._predict_move(target)
|
|
|
|
elif len(self._env[i.INVENTORY].by_entity(self.state)):
|
|
self.mode = MODE_BRING
|
|
action = self._predict_move(target)
|
|
else:
|
|
action = int(np.random.randint(self._env.action_space.n))
|
|
# noinspection PyUnboundLocalVariable
|
|
return action
|