2023-06-20 18:21:43 +02:00

131 lines
5.2 KiB
Python

import itertools
from random import choice
import numpy as np
import networkx as nx
from networkx.algorithms.approximation import traveling_salesman as tsp
from mfg_package.modules.doors import constants as do
from mfg_package.environment import constants as c
from mfg_package.utils.helpers import MOVEMAP
from abc import abstractmethod, ABC
future_planning = 7
def points_to_graph(coordiniates_or_tiles, allow_euclidean_connections=True, allow_manhattan_connections=True):
"""
Given a set of coordinates, this function contructs a non-directed graph, by conncting adjected points.
There are three combinations of settings:
Allow all neigbors: Distance(a, b) <= sqrt(2)
Allow only manhattan: Distance(a, b) == 1
Allow only euclidean: Distance(a, b) == sqrt(2)
:param coordiniates_or_tiles: A set of coordinates.
:type coordiniates_or_tiles: Tiles
:param allow_euclidean_connections: Whether to regard diagonal adjected cells as neighbors
:type: bool
:param allow_manhattan_connections: Whether to regard directly adjected cells as neighbors
:type: bool
:return: A graph with nodes that are conneceted as specified by the parameters.
:rtype: nx.Graph
"""
assert allow_euclidean_connections or allow_manhattan_connections
if hasattr(coordiniates_or_tiles, 'positions'):
coordiniates_or_tiles = coordiniates_or_tiles.positions
possible_connections = itertools.combinations(coordiniates_or_tiles, 2)
graph = nx.Graph()
for a, b in possible_connections:
diff = np.linalg.norm(np.asarray(a)-np.asarray(b))
if allow_manhattan_connections and allow_euclidean_connections and diff <= np.sqrt(2):
graph.add_edge(a, b)
elif not allow_manhattan_connections and allow_euclidean_connections and diff == np.sqrt(2):
graph.add_edge(a, b)
elif allow_manhattan_connections and not allow_euclidean_connections and diff == 1:
graph.add_edge(a, b)
return graph
class TSPBaseAgent(ABC):
def __init__(self, state, agent_i, static_problem: bool = True):
self.static_problem = static_problem
self.local_optimization = True
self._env = state
self.state = self._env.state[c.AGENT][agent_i]
self._floortile_graph = points_to_graph(self._env[c.FLOOR].positions)
self._static_route = None
@abstractmethod
def predict(self, *_, **__) -> int:
return 0
def _use_door_or_move(self, door, target):
if door.is_closed:
# Translate the action_object to an integer to have the same output as any other model
action = do.ACTION_DOOR_USE
else:
action = self._predict_move(target)
return action
def calculate_tsp_route(self, target_identifier):
positions = [x for x in self._env.state[target_identifier].positions if x != c.VALUE_NO_POS]
if self.local_optimization:
nodes = \
[self.state.pos] + \
[x for x in positions if max(abs(np.subtract(x, self.state.pos))) < 3]
try:
while len(nodes) < 7:
nodes += [next(x for x in positions if x not in nodes)]
except StopIteration:
nodes = [self.state.pos] + positions
else:
nodes = [self.state.pos] + positions
route = tsp.traveling_salesman_problem(self._floortile_graph,
nodes=nodes, cycle=True, method=tsp.greedy_tsp)
return route
def _door_is_close(self):
try:
return next(y for x in self.state.tile.neighboring_floor for y in x.guests if do.DOOR in y.name)
except StopIteration:
return None
def _has_targets(self, target_identifier):
return bool(len([x for x in self._env.state[target_identifier] if x.pos != c.VALUE_NO_POS]) >= 1)
def _predict_move(self, target_identifier):
if self._has_targets(target_identifier):
if self.static_problem:
if not self._static_route:
self._static_route = self.calculate_tsp_route(target_identifier)
else:
pass
next_pos = self._static_route.pop(0)
while next_pos == self.state.pos:
next_pos = self._static_route.pop(0)
else:
if not self._static_route:
self._static_route = self.calculate_tsp_route(target_identifier)[:7]
next_pos = self._static_route.pop(0)
while next_pos == self.state.pos:
next_pos = self._static_route.pop(0)
diff = np.subtract(next_pos, self.state.pos)
# Retrieve action based on the pos dif (like in: What do I have to do to get there?)
try:
action = next(action for action, pos_diff in MOVEMAP.items() if np.all(diff == pos_diff))
except StopIteration:
print(f'diff: {diff}')
print('This Should not happen!')
action = choice(self.state.actions).name
else:
action = choice(self.state.actions).name
# noinspection PyUnboundLocalVariable
return action