100 lines
3.8 KiB
Python

import random
import numpy as np
from pathlib import Path
from environments import helpers as h
class BaseFactory:
def __init__(self, level='simple', n_agents=1, max_steps=1e3):
self.n_agents = n_agents
self.max_steps = max_steps
self.level = h.one_hot_level(
h.parse_level(Path(__file__).parent / h.LEVELS_DIR / f'{level}.txt')
)
self.slice_strings = {0: 'level', **{i: f'agent#{i}' for i in range(1, self.n_agents+1)}}
self.reset()
def reset(self):
self.done = False
self.steps = 0
# Agent placement ...
agents = np.zeros((self.n_agents, *self.level.shape), dtype=np.int8)
floor_tiles = np.argwhere(self.level == h.IS_FREE_CELL)
# ... on random positions
np.random.shuffle(floor_tiles)
for i, (x, y) in enumerate(floor_tiles[:self.n_agents]):
agents[i, x, y] = h.IS_OCCUPIED_CELL
# state.shape = level, agent 1,..., agent n,
self.state = np.concatenate((np.expand_dims(self.level, axis=0), agents), axis=0)
# Returns State, Reward, Done, Info
return self.state, 0, self.done, {}
def additional_actions(self, agent_i, action) -> ((int, int), bool):
raise NotImplementedError
def step(self, actions):
actions = [actions] if isinstance(actions, int) else actions
assert isinstance(actions, list), f'"actions has to be in [{int, list}]'
self.steps += 1
r = 0
actions = list(enumerate(actions))
random.shuffle(actions)
for agent_i, action in actions:
if action <= 8:
pos, did_collide = self.move_or_colide(agent_i, action)
else:
pos, did_collide = self.additional_actions(agent_i, action)
actions[agent_i] = (pos, did_collide)
collision_vecs = np.zeros((self.n_agents, self.state.shape[0])) # n_agents x n_slices
for agent_i, action in enumerate(actions):
collision_vecs[agent_i] = self.check_collisions(agent_i, *action)
reward, info = self.step_core(collision_vecs, actions, r)
r += reward
if self.steps >= self.max_steps:
self.done = True
return self.state, r, self.done, info
def check_collisions(self, agent_i, pos, valid):
pos_x, pos_y = pos
collisions_vec = self.state[:, pos_x, pos_y].copy() # "vertical fiber" at position of agent i
collisions_vec[h.AGENT_START_IDX + agent_i] = h.IS_FREE_CELL # no self-collisions
if valid:
pass
else:
collisions_vec[h.LEVEL_IDX] = h.IS_OCCUPIED_CELL
return collisions_vec
def move(self, agent_i, old_pos, new_pos):
(x, y), (x_new, y_new) = old_pos, new_pos
self.state[agent_i + h.AGENT_START_IDX, x, y] = h.IS_FREE_CELL
self.state[agent_i + h.AGENT_START_IDX, x_new, y_new] = h.IS_OCCUPIED_CELL
def move_or_colide(self, agent_i, action) -> ((int, int), bool):
old_pos, new_pos, valid = h.check_agent_move(state=self.state,
dim=agent_i + h.AGENT_START_IDX,
action=action)
if valid:
# Does not collide width level boundrys
self.move(agent_i, old_pos, new_pos)
return new_pos, valid
else:
# Agent seems to be trying to collide in this step
return old_pos, valid
@property
def free_cells(self) -> np.ndarray:
free_cells = self.state.sum(0)
free_cells = np.argwhere(free_cells == h.IS_FREE_CELL)
np.random.shuffle(free_cells)
return free_cells
def step_core(self, collisions_vec, actions, r):
# Returns: Reward, Info
# Set to "raise NotImplementedError"
return 0, {} # What is returned here?