2021-11-24 17:39:26 +01:00

103 lines
3.4 KiB
Python

from collections import defaultdict
from pathlib import Path
from typing import Union
import numpy as np
import pandas as pd
import simplejson
from stable_baselines3.common.callbacks import BaseCallback
from environments.factory.base.base_factory import REC_TAC
class EnvRecorder(BaseCallback):
def __init__(self, env, entities='all'):
super(EnvRecorder, self).__init__()
self.unwrapped = env
self._recorder_dict = defaultdict(list)
self._recorder_out_list = list()
if isinstance(entities, str):
if entities.lower() == 'all':
self._entities = None
else:
self._entities = [entities]
else:
self._entities = entities
self.started = False
self.closed = False
def __getattr__(self, item):
return getattr(self.unwrapped, item)
def reset(self):
self.unwrapped._record_episodes = True
return self.unwrapped.reset()
def _on_training_start(self) -> None:
self.unwrapped._record_episodes = True
pass
def _read_info(self, env_idx, info: dict):
if info_dict := {key.replace(REC_TAC, ''): val for key, val in info.items() if key.startswith(f'{REC_TAC}')}:
if self._entities:
info_dict = {k: v for k, v in info_dict.items() if k in self._entities}
info_dict.update(episode=(self.num_timesteps + env_idx))
self._recorder_dict[env_idx].append(info_dict)
else:
pass
return
def _read_done(self, env_idx, done):
if done:
self._recorder_out_list.append({'steps': self._recorder_dict[env_idx],
'episode': len(self._recorder_out_list)})
self._recorder_dict[env_idx] = list()
else:
pass
def save_records(self, filepath: Union[Path, str], save_occupation_map=False, save_trajectory_map=False):
filepath = Path(filepath)
filepath.parent.mkdir(exist_ok=True, parents=True)
# self.out_file.unlink(missing_ok=True)
with filepath.open('w') as f:
out_dict = {'episodes': self._recorder_out_list, 'header': self.unwrapped.params}
try:
simplejson.dump(out_dict, f, indent=4)
except TypeError:
print('Shit')
if save_occupation_map:
a = np.zeros((15, 15))
for episode in out_dict['episodes']:
df = pd.DataFrame([y for x in episode['steps'] for y in x['Agents']])
b = list(df[['x', 'y']].to_records(index=False))
np.add.at(a, tuple(zip(*b)), 1)
# a = np.rot90(a)
import seaborn as sns
from matplotlib import pyplot as plt
hm = sns.heatmap(data=a)
hm.set_title('Very Nice Heatmap')
plt.show()
if save_trajectory_map:
raise NotImplementedError('This has not yet been implemented.')
def _on_step(self) -> bool:
for env_idx, info in enumerate(self.locals.get('infos', [])):
self._read_info(env_idx, info)
dones = list(enumerate(self.locals.get('dones', [])))
dones.extend(list(enumerate(self.locals.get('done', []))))
for env_idx, done in dones:
self._read_done(env_idx, done)
return True
def _on_training_end(self) -> None:
pass