mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-24 07:46:44 +02:00
609 lines
23 KiB
Python
609 lines
23 KiB
Python
"""This file is based on the car_racing.py in OpenAI's gym.
|
|
|
|
Description
|
|
We provide some modified CarRacing environments here:
|
|
* CarRacingColor-v0
|
|
Both the lane and the grass colors are perturbed at the env.reset() with scalar noises.
|
|
* CarRacingColor3-v0
|
|
Both the lane and the grass colors are perturbed at the env.reset() with 3d noises.
|
|
* CarRacingBar-v0
|
|
We add vertical bars on the left and right side of the screen.
|
|
* CarRacingBlob-v0
|
|
A red blob that follows the car at a fixed position in the car's frame.
|
|
* CarRacingNoise-v0
|
|
We replace the green background with noise.
|
|
*. CarRacingVideo-v0
|
|
We replace the green background with frames from a video, the user is
|
|
responsible for creating these frames.
|
|
These environments were first used in the paper "Neuroevolution of Self-Interpretable Agent"
|
|
https://attentionagent.github.io/
|
|
|
|
Author
|
|
Yujin Tang (yujintang@google.com)
|
|
"""
|
|
|
|
import cv2
|
|
import glob
|
|
import os
|
|
import sys, math
|
|
import numpy as np
|
|
|
|
import Box2D
|
|
from Box2D.b2 import (edgeShape, circleShape, fixtureDef, polygonShape, revoluteJointDef, contactListener)
|
|
|
|
import gym
|
|
from gym import spaces
|
|
from .car_dynamics import Car
|
|
from gym.utils import colorize, seeding, EzPickle
|
|
|
|
import pyglet
|
|
from pyglet import gl
|
|
|
|
# Easiest continuous control task to learn from pixels, a top-down racing environment.
|
|
# Discrete control is reasonable in this environment as well, on/off discretization is
|
|
# fine.
|
|
#
|
|
# State consists of STATE_W x STATE_H pixels.
|
|
#
|
|
# Reward is -0.1 every frame and +1000/N for every track tile visited, where N is
|
|
# the total number of tiles visited in the track. For example, if you have finished in 732 frames,
|
|
# your reward is 1000 - 0.1*732 = 926.8 points.
|
|
#
|
|
# Game is solved when agent consistently gets 900+ points. Track generated is random every episode.
|
|
#
|
|
# Episode finishes when all tiles are visited. Car also can go outside of PLAYFIELD, that
|
|
# is far off the track, then it will get -100 and die.
|
|
#
|
|
# Some indicators shown at the bottom of the window and the state RGB buffer. From
|
|
# left to right: true speed, four ABS sensors, steering wheel position and gyroscope.
|
|
#
|
|
# To play yourself (it's rather fast for humans), type:
|
|
#
|
|
# python gym/envs/box2d/car_racing.py
|
|
#
|
|
# Remember it's powerful rear-wheel drive car, don't press accelerator and turn at the
|
|
# same time.
|
|
#
|
|
# Created by Oleg Klimov. Licensed on the same terms as the rest of OpenAI Gym.
|
|
|
|
STATE_W = 96 # less than Atari 160x192
|
|
STATE_H = 96
|
|
VIDEO_W = 600
|
|
VIDEO_H = 400
|
|
WINDOW_W = 1000
|
|
WINDOW_H = 800
|
|
|
|
SCALE = 6.0 # Track scale
|
|
TRACK_RAD = 900/SCALE # Track is heavily morphed circle with this radius
|
|
PLAYFIELD = 2000/SCALE # Game over boundary
|
|
FPS = 50 # Frames per second
|
|
ZOOM = 2.7 # Camera zoom
|
|
ZOOM_FOLLOW = True # Set to False for fixed view (don't use zoom)
|
|
|
|
|
|
TRACK_DETAIL_STEP = 21/SCALE
|
|
TRACK_TURN_RATE = 0.31
|
|
TRACK_WIDTH = 40/SCALE
|
|
BORDER = 8/SCALE
|
|
BORDER_MIN_COUNT = 4
|
|
|
|
ROAD_COLOR = [0.4, 0.4, 0.4]
|
|
|
|
class FrictionDetector(contactListener):
|
|
def __init__(self, env):
|
|
contactListener.__init__(self)
|
|
self.env = env
|
|
def BeginContact(self, contact):
|
|
self._contact(contact, True)
|
|
def EndContact(self, contact):
|
|
self._contact(contact, False)
|
|
def _contact(self, contact, begin):
|
|
tile = None
|
|
obj = None
|
|
u1 = contact.fixtureA.body.userData
|
|
u2 = contact.fixtureB.body.userData
|
|
if u1 and "road_friction" in u1.__dict__:
|
|
tile = u1
|
|
obj = u2
|
|
if u2 and "road_friction" in u2.__dict__:
|
|
tile = u2
|
|
obj = u1
|
|
if not tile:
|
|
return
|
|
|
|
tile.color[0] = self.env.road_color[0]
|
|
tile.color[1] = self.env.road_color[1]
|
|
tile.color[2] = self.env.road_color[2]
|
|
if not obj or "tiles" not in obj.__dict__:
|
|
return
|
|
if begin:
|
|
obj.tiles.add(tile)
|
|
# print tile.road_friction, "ADD", len(obj.tiles)
|
|
if not tile.road_visited:
|
|
tile.road_visited = True
|
|
self.env.reward += 1000.0/len(self.env.track)
|
|
self.env.tile_visited_count += 1
|
|
else:
|
|
obj.tiles.remove(tile)
|
|
# print tile.road_friction, "DEL", len(obj.tiles) -- should delete to zero when on grass (this works)
|
|
|
|
class CarRacing(gym.Env, EzPickle):
|
|
metadata = {
|
|
'render.modes': ['human', 'rgb_array', 'state_pixels'],
|
|
'video.frames_per_second' : FPS
|
|
}
|
|
|
|
def __init__(self, verbose=1, **kwargs):
|
|
EzPickle.__init__(self)
|
|
self.seed()
|
|
|
|
self.road_color = ROAD_COLOR[:]
|
|
self.grass_color = [0.4, 0.8, 0.4, 1]
|
|
if 'modification' in kwargs:
|
|
self._modification_type = kwargs['modification']
|
|
else:
|
|
self._modification_type = ''
|
|
|
|
self.contactListener_keepref = FrictionDetector(self)
|
|
self.world = Box2D.b2World((0,0), contactListener=self.contactListener_keepref)
|
|
self.viewer = None
|
|
self.invisible_state_window = None
|
|
self.invisible_video_window = None
|
|
self.road = None
|
|
self.car = None
|
|
self.reward = 0.0
|
|
self.prev_reward = 0.0
|
|
self.verbose = verbose
|
|
self.fd_tile = fixtureDef(
|
|
shape = polygonShape(vertices=
|
|
[(0, 0),(1, 0),(1, -1),(0, -1)]))
|
|
|
|
self.action_space = spaces.Box( np.array([-1,0,0]), np.array([+1,+1,+1]), dtype=np.float32) # steer, gas, brake
|
|
self.observation_space = spaces.Box(low=0, high=255, shape=(STATE_H, STATE_W, 3), dtype=np.uint8)
|
|
|
|
self.step_cnt = 0
|
|
|
|
def seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def _destroy(self):
|
|
if not self.road:
|
|
return
|
|
for t in self.road:
|
|
self.world.DestroyBody(t)
|
|
self.road = []
|
|
self.car.destroy()
|
|
|
|
def _create_track(self):
|
|
CHECKPOINTS = 12
|
|
|
|
# Create checkpoints
|
|
checkpoints = []
|
|
for c in range(CHECKPOINTS):
|
|
alpha = 2*math.pi*c/CHECKPOINTS + self.np_random.uniform(0, 2*math.pi*1/CHECKPOINTS)
|
|
rad = self.np_random.uniform(TRACK_RAD/3, TRACK_RAD)
|
|
if c==0:
|
|
alpha = 0
|
|
rad = 1.5*TRACK_RAD
|
|
if c==CHECKPOINTS-1:
|
|
alpha = 2*math.pi*c/CHECKPOINTS
|
|
self.start_alpha = 2*math.pi*(-0.5)/CHECKPOINTS
|
|
rad = 1.5*TRACK_RAD
|
|
checkpoints.append( (alpha, rad*math.cos(alpha), rad*math.sin(alpha)) )
|
|
|
|
# print "\n".join(str(h) for h in checkpoints)
|
|
# self.road_poly = [ ( # uncomment this to see checkpoints
|
|
# [ (tx,ty) for a,tx,ty in checkpoints ],
|
|
# (0.7,0.7,0.9) ) ]
|
|
self.road = []
|
|
|
|
# Go from one checkpoint to another to create track
|
|
x, y, beta = 1.5*TRACK_RAD, 0, 0
|
|
dest_i = 0
|
|
laps = 0
|
|
track = []
|
|
no_freeze = 2500
|
|
visited_other_side = False
|
|
while True:
|
|
alpha = math.atan2(y, x)
|
|
if visited_other_side and alpha > 0:
|
|
laps += 1
|
|
visited_other_side = False
|
|
if alpha < 0:
|
|
visited_other_side = True
|
|
alpha += 2*math.pi
|
|
while True: # Find destination from checkpoints
|
|
failed = True
|
|
while True:
|
|
dest_alpha, dest_x, dest_y = checkpoints[dest_i % len(checkpoints)]
|
|
if alpha <= dest_alpha:
|
|
failed = False
|
|
break
|
|
dest_i += 1
|
|
if dest_i % len(checkpoints) == 0:
|
|
break
|
|
if not failed:
|
|
break
|
|
alpha -= 2*math.pi
|
|
continue
|
|
r1x = math.cos(beta)
|
|
r1y = math.sin(beta)
|
|
p1x = -r1y
|
|
p1y = r1x
|
|
dest_dx = dest_x - x # vector towards destination
|
|
dest_dy = dest_y - y
|
|
proj = r1x*dest_dx + r1y*dest_dy # destination vector projected on rad
|
|
while beta - alpha > 1.5*math.pi:
|
|
beta -= 2*math.pi
|
|
while beta - alpha < -1.5*math.pi:
|
|
beta += 2*math.pi
|
|
prev_beta = beta
|
|
proj *= SCALE
|
|
if proj > 0.3:
|
|
beta -= min(TRACK_TURN_RATE, abs(0.001*proj))
|
|
if proj < -0.3:
|
|
beta += min(TRACK_TURN_RATE, abs(0.001*proj))
|
|
x += p1x*TRACK_DETAIL_STEP
|
|
y += p1y*TRACK_DETAIL_STEP
|
|
track.append( (alpha,prev_beta*0.5 + beta*0.5,x,y) )
|
|
if laps > 4:
|
|
break
|
|
no_freeze -= 1
|
|
if no_freeze==0:
|
|
break
|
|
# print "\n".join([str(t) for t in enumerate(track)])
|
|
|
|
# Find closed loop range i1..i2, first loop should be ignored, second is OK
|
|
i1, i2 = -1, -1
|
|
i = len(track)
|
|
while True:
|
|
i -= 1
|
|
if i==0:
|
|
return False # Failed
|
|
pass_through_start = track[i][0] > self.start_alpha and track[i-1][0] <= self.start_alpha
|
|
if pass_through_start and i2==-1:
|
|
i2 = i
|
|
elif pass_through_start and i1==-1:
|
|
i1 = i
|
|
break
|
|
if self.verbose == 1:
|
|
print("Track generation: %i..%i -> %i-tiles track" % (i1, i2, i2-i1))
|
|
assert i1!=-1
|
|
assert i2!=-1
|
|
|
|
track = track[i1:i2-1]
|
|
|
|
first_beta = track[0][1]
|
|
first_perp_x = math.cos(first_beta)
|
|
first_perp_y = math.sin(first_beta)
|
|
# Length of perpendicular jump to put together head and tail
|
|
well_glued_together = np.sqrt(
|
|
np.square( first_perp_x*(track[0][2] - track[-1][2]) ) +
|
|
np.square( first_perp_y*(track[0][3] - track[-1][3]) ))
|
|
if well_glued_together > TRACK_DETAIL_STEP:
|
|
return False
|
|
|
|
# Red-white border on hard turns
|
|
border = [False]*len(track)
|
|
for i in range(len(track)):
|
|
good = True
|
|
oneside = 0
|
|
for neg in range(BORDER_MIN_COUNT):
|
|
beta1 = track[i-neg-0][1]
|
|
beta2 = track[i-neg-1][1]
|
|
good &= abs(beta1 - beta2) > TRACK_TURN_RATE*0.2
|
|
oneside += np.sign(beta1 - beta2)
|
|
good &= abs(oneside) == BORDER_MIN_COUNT
|
|
border[i] = good
|
|
for i in range(len(track)):
|
|
for neg in range(BORDER_MIN_COUNT):
|
|
border[i-neg] |= border[i]
|
|
|
|
# Create tiles
|
|
for i in range(len(track)):
|
|
alpha1, beta1, x1, y1 = track[i]
|
|
alpha2, beta2, x2, y2 = track[i-1]
|
|
road1_l = (x1 - TRACK_WIDTH*math.cos(beta1), y1 - TRACK_WIDTH*math.sin(beta1))
|
|
road1_r = (x1 + TRACK_WIDTH*math.cos(beta1), y1 + TRACK_WIDTH*math.sin(beta1))
|
|
road2_l = (x2 - TRACK_WIDTH*math.cos(beta2), y2 - TRACK_WIDTH*math.sin(beta2))
|
|
road2_r = (x2 + TRACK_WIDTH*math.cos(beta2), y2 + TRACK_WIDTH*math.sin(beta2))
|
|
vertices = [road1_l, road1_r, road2_r, road2_l]
|
|
self.fd_tile.shape.vertices = vertices
|
|
t = self.world.CreateStaticBody(fixtures=self.fd_tile)
|
|
t.userData = t
|
|
c = 0.01*(i%3)
|
|
t.color = [self.road_color[0] + c,
|
|
self.road_color[1] + c,
|
|
self.road_color[2] + c]
|
|
t.road_visited = False
|
|
t.road_friction = 1.0
|
|
t.fixtures[0].sensor = True
|
|
self.road_poly.append(( [road1_l, road1_r, road2_r, road2_l], t.color ))
|
|
|
|
self.road.append(t)
|
|
if border[i]:
|
|
side = np.sign(beta2 - beta1)
|
|
b1_l = (x1 + side* TRACK_WIDTH *math.cos(beta1), y1 + side* TRACK_WIDTH *math.sin(beta1))
|
|
b1_r = (x1 + side*(TRACK_WIDTH+BORDER)*math.cos(beta1), y1 + side*(TRACK_WIDTH+BORDER)*math.sin(beta1))
|
|
b2_l = (x2 + side* TRACK_WIDTH *math.cos(beta2), y2 + side* TRACK_WIDTH *math.sin(beta2))
|
|
b2_r = (x2 + side*(TRACK_WIDTH+BORDER)*math.cos(beta2), y2 + side*(TRACK_WIDTH+BORDER)*math.sin(beta2))
|
|
self.road_poly.append(( [b1_l, b1_r, b2_r, b2_l], (1,1,1) if i%2==0 else (1,0,0) ))
|
|
self.track = track
|
|
return True
|
|
|
|
def reset(self):
|
|
self._destroy()
|
|
self.reward = 0.0
|
|
self.prev_reward = 0.0
|
|
self.tile_visited_count = 0
|
|
self.t = 0.0
|
|
self.road_poly = []
|
|
self.froad_poly = []
|
|
self.step_cnt = 0
|
|
|
|
# Color modification.
|
|
self.road_color = np.array([0.4, 0.4, 0.4]) # Original road color.
|
|
self.grass_color = np.array([0.4, 0.8, 0.4, 1]) # Original grass color.
|
|
if self._modification_type == 'color':
|
|
noise1 = np.random.uniform(-0.2, 0.2)
|
|
noise2 = np.random.uniform(-0.2, 0.2)
|
|
print('noise1={}'.format(noise1))
|
|
print('noise2={}'.format(noise2))
|
|
self.road_color += noise1
|
|
self.grass_color[:3] += noise2
|
|
if self._modification_type == 'color3':
|
|
noise1 = np.random.uniform(-0.2, 0.2, 3)
|
|
noise2 = np.random.uniform(-0.2, 0.2, 3)
|
|
print('noise1={}'.format(noise1))
|
|
print('noise2={}'.format(noise2))
|
|
self.road_color += noise1
|
|
self.grass_color[:3] += noise2
|
|
|
|
while True:
|
|
success = self._create_track()
|
|
if success:
|
|
break
|
|
if self.verbose == 1:
|
|
print("retry to generate track (normal if there are not many of this messages)")
|
|
add_blob = self._modification_type == 'blob'
|
|
self.car = Car(self.world, *self.track[0][1:4], add_blob=add_blob)
|
|
|
|
return self.step(None)[0]
|
|
|
|
def step(self, action):
|
|
if action is not None:
|
|
self.car.steer(-action[0])
|
|
self.car.gas(action[1])
|
|
self.car.brake(action[2])
|
|
|
|
self.car.step(1.0/FPS)
|
|
self.world.Step(1.0/FPS, 6*30, 2*30)
|
|
self.t += 1.0/FPS
|
|
|
|
self.state = self.render("state_pixels")
|
|
|
|
step_reward = 0
|
|
done = False
|
|
if action is not None: # First step without action, called from reset()
|
|
self.reward -= 0.1
|
|
# We actually don't want to count fuel spent, we want car to be faster.
|
|
# self.reward -= 10 * self.car.fuel_spent / ENGINE_POWER
|
|
self.car.fuel_spent = 0.0
|
|
step_reward = self.reward - self.prev_reward
|
|
self.prev_reward = self.reward
|
|
if self.tile_visited_count==len(self.track):
|
|
done = True
|
|
x, y = self.car.hull.position
|
|
if abs(x) > PLAYFIELD or abs(y) > PLAYFIELD:
|
|
done = True
|
|
step_reward = -100
|
|
|
|
self.step_cnt += 1
|
|
|
|
return self.state, step_reward, done, {}
|
|
|
|
def render(self, mode='human'):
|
|
assert mode in ['human', 'state_pixels', 'rgb_array']
|
|
if self.viewer is None:
|
|
from gym.envs.classic_control import rendering
|
|
self.viewer = rendering.Viewer(WINDOW_W, WINDOW_H)
|
|
self.score_label = pyglet.text.Label('0000', font_size=36,
|
|
x=20, y=WINDOW_H*2.5/40.00, anchor_x='left', anchor_y='center',
|
|
color=(255,255,255,255))
|
|
self.transform = rendering.Transform()
|
|
|
|
if "t" not in self.__dict__: return # reset() not called yet
|
|
|
|
zoom = 0.1*SCALE*max(1-self.t, 0) + ZOOM*SCALE*min(self.t, 1) # Animate zoom first second
|
|
zoom_state = ZOOM*SCALE*STATE_W/WINDOW_W
|
|
zoom_video = ZOOM*SCALE*VIDEO_W/WINDOW_W
|
|
scroll_x = self.car.hull.position[0]
|
|
scroll_y = self.car.hull.position[1]
|
|
angle = -self.car.hull.angle
|
|
vel = self.car.hull.linearVelocity
|
|
if np.linalg.norm(vel) > 0.5:
|
|
angle = math.atan2(vel[0], vel[1])
|
|
self.transform.set_scale(zoom, zoom)
|
|
self.transform.set_translation(
|
|
WINDOW_W/2 - (scroll_x*zoom*math.cos(angle) - scroll_y*zoom*math.sin(angle)),
|
|
WINDOW_H/4 - (scroll_x*zoom*math.sin(angle) + scroll_y*zoom*math.cos(angle)) )
|
|
self.transform.set_rotation(angle)
|
|
|
|
self.car.draw(self.viewer, mode!="state_pixels")
|
|
|
|
arr = None
|
|
win = self.viewer.window
|
|
win.switch_to()
|
|
win.dispatch_events()
|
|
|
|
win.clear()
|
|
t = self.transform
|
|
if mode=='rgb_array':
|
|
VP_W = VIDEO_W
|
|
VP_H = VIDEO_H
|
|
elif mode == 'state_pixels':
|
|
VP_W = STATE_W
|
|
VP_H = STATE_H
|
|
else:
|
|
pixel_scale = 1
|
|
if hasattr(win.context, '_nscontext'):
|
|
pixel_scale = win.context._nscontext.view().backingScaleFactor() # pylint: disable=protected-access
|
|
VP_W = int(pixel_scale * WINDOW_W)
|
|
VP_H = int(pixel_scale * WINDOW_H)
|
|
|
|
gl.glViewport(0, 0, VP_W, VP_H)
|
|
t.enable()
|
|
self.render_road()
|
|
for geom in self.viewer.onetime_geoms:
|
|
geom.render()
|
|
self.viewer.onetime_geoms = []
|
|
t.disable()
|
|
self.render_indicators(WINDOW_W, WINDOW_H)
|
|
|
|
if mode == 'human':
|
|
win.flip()
|
|
return self.viewer.isopen
|
|
|
|
image_data = pyglet.image.get_buffer_manager().get_color_buffer().get_image_data()
|
|
arr = np.fromstring(image_data.get_data(), dtype=np.uint8, sep='')
|
|
arr = arr.reshape(VP_H, VP_W, 4)
|
|
arr = arr[::-1, :, 0:3]
|
|
|
|
return arr
|
|
|
|
def close(self):
|
|
if self.viewer is not None:
|
|
self.viewer.close()
|
|
self.viewer = None
|
|
|
|
def render_road(self):
|
|
if self._modification_type in ['noise', 'video']:
|
|
H = W = int(PLAYFIELD * 2)
|
|
if self._modification_type == 'noise':
|
|
background = np.random.randint(0, 256, H * W * 3).reshape([H, W, 3])
|
|
img_path = '/tmp/screen.png'
|
|
cv2.imwrite(img_path, background)
|
|
else:
|
|
video_img_dir = os.environ.get('CARRACING_VIDEO_DIR', '/tmp/car_racing_video')
|
|
max_steps = len(glob.glob(os.path.join(video_img_dir, '*.png')))
|
|
img_path = os.path.join(video_img_dir, '{}.png'.format((self.step_cnt + 1) % max_steps))
|
|
image = pyglet.image.load(img_path)
|
|
image.anchor_x = image.width // 2
|
|
image.anchor_y = image.height // 2
|
|
s = pyglet.sprite.Sprite(image)
|
|
s.draw()
|
|
else:
|
|
gl.glBegin(gl.GL_QUADS)
|
|
gl.glColor4f(*self.grass_color)
|
|
gl.glVertex3f(-PLAYFIELD, +PLAYFIELD, 0)
|
|
gl.glVertex3f(+PLAYFIELD, +PLAYFIELD, 0)
|
|
gl.glVertex3f(+PLAYFIELD, -PLAYFIELD, 0)
|
|
gl.glVertex3f(-PLAYFIELD, -PLAYFIELD, 0)
|
|
gl.glColor4f(0.4, 0.9, 0.4, 1.0)
|
|
k = PLAYFIELD/20.0
|
|
for x in range(-20, 20, 2):
|
|
for y in range(-20, 20, 2):
|
|
gl.glVertex3f(k*x + k, k*y + 0, 0)
|
|
gl.glVertex3f(k*x + 0, k*y + 0, 0)
|
|
gl.glVertex3f(k*x + 0, k*y + k, 0)
|
|
gl.glVertex3f(k*x + k, k*y + k, 0)
|
|
gl.glEnd()
|
|
|
|
gl.glBegin(gl.GL_QUADS)
|
|
for poly, color in self.road_poly:
|
|
gl.glColor4f(color[0], color[1], color[2], 1)
|
|
for p in poly:
|
|
gl.glVertex3f(p[0], p[1], 0)
|
|
gl.glEnd()
|
|
|
|
def render_indicators(self, W, H):
|
|
gl.glBegin(gl.GL_QUADS)
|
|
s = W/40.0
|
|
h = H/40.0
|
|
gl.glColor4f(0,0,0,1)
|
|
gl.glVertex3f(W, 0, 0)
|
|
gl.glVertex3f(W, 5*h, 0)
|
|
gl.glVertex3f(0, 5*h, 0)
|
|
gl.glVertex3f(0, 0, 0)
|
|
|
|
if self._modification_type == 'bar':
|
|
gl.glVertex3f(W, 5*h, 0)
|
|
gl.glVertex3f(W, H, 0)
|
|
gl.glVertex3f(W-3*s, H, 0)
|
|
gl.glVertex3f(W-3*s, 5*h, 0)
|
|
|
|
gl.glVertex3f(3*s, 5*h, 0)
|
|
gl.glVertex3f(3*s, H, 0)
|
|
gl.glVertex3f(0, H, 0)
|
|
gl.glVertex3f(0, 5*h, 0)
|
|
|
|
def vertical_ind(place, val, color):
|
|
gl.glColor4f(color[0], color[1], color[2], 1)
|
|
gl.glVertex3f((place+0)*s, h + h*val, 0)
|
|
gl.glVertex3f((place+1)*s, h + h*val, 0)
|
|
gl.glVertex3f((place+1)*s, h, 0)
|
|
gl.glVertex3f((place+0)*s, h, 0)
|
|
def horiz_ind(place, val, color):
|
|
gl.glColor4f(color[0], color[1], color[2], 1)
|
|
gl.glVertex3f((place+0)*s, 4*h , 0)
|
|
gl.glVertex3f((place+val)*s, 4*h, 0)
|
|
gl.glVertex3f((place+val)*s, 2*h, 0)
|
|
gl.glVertex3f((place+0)*s, 2*h, 0)
|
|
true_speed = np.sqrt(np.square(self.car.hull.linearVelocity[0]) + np.square(self.car.hull.linearVelocity[1]))
|
|
vertical_ind(5, 0.02*true_speed, (1,1,1))
|
|
vertical_ind(7, 0.01*self.car.wheels[0].omega, (0.0,0,1)) # ABS sensors
|
|
vertical_ind(8, 0.01*self.car.wheels[1].omega, (0.0,0,1))
|
|
vertical_ind(9, 0.01*self.car.wheels[2].omega, (0.2,0,1))
|
|
vertical_ind(10,0.01*self.car.wheels[3].omega, (0.2,0,1))
|
|
horiz_ind(20, -10.0*self.car.wheels[0].joint.angle, (0,1,0))
|
|
horiz_ind(30, -0.8*self.car.hull.angularVelocity, (1,0,0))
|
|
gl.glEnd()
|
|
self.score_label.text = "%04i" % self.reward
|
|
self.score_label.draw()
|
|
|
|
|
|
if __name__=="__main__":
|
|
from pyglet.window import key
|
|
a = np.array( [0.0, 0.0, 0.0] )
|
|
def key_press(k, mod):
|
|
global restart
|
|
if k==0xff0d: restart = True
|
|
if k==key.LEFT: a[0] = -1.0
|
|
if k==key.RIGHT: a[0] = +1.0
|
|
if k==key.UP: a[1] = +1.0
|
|
if k==key.DOWN: a[2] = +0.8 # set 1.0 for wheels to block to zero rotation
|
|
def key_release(k, mod):
|
|
if k==key.LEFT and a[0]==-1.0: a[0] = 0
|
|
if k==key.RIGHT and a[0]==+1.0: a[0] = 0
|
|
if k==key.UP: a[1] = 0
|
|
if k==key.DOWN: a[2] = 0
|
|
env = CarRacing()
|
|
env.render()
|
|
env.viewer.window.on_key_press = key_press
|
|
env.viewer.window.on_key_release = key_release
|
|
record_video = False
|
|
if record_video:
|
|
from gym.wrappers.monitor import Monitor
|
|
env = Monitor(env, '/tmp/video-test', force=True)
|
|
isopen = True
|
|
while isopen:
|
|
env.reset()
|
|
total_reward = 0.0
|
|
steps = 0
|
|
restart = False
|
|
while True:
|
|
s, r, done, info = env.step(a)
|
|
total_reward += r
|
|
if steps % 200 == 0 or done:
|
|
print("\naction " + str(["{:+0.2f}".format(x) for x in a]))
|
|
print("step {} total_reward {:+0.2f}".format(steps, total_reward))
|
|
#import matplotlib.pyplot as plt
|
|
#plt.imshow(s)
|
|
#plt.savefig("test.jpeg")
|
|
steps += 1
|
|
isopen = env.render()
|
|
if done or restart or isopen == False:
|
|
break
|
|
env.close()
|