steffen-illium 7b4e60b0aa new register objects
state slices are now registers
def __get__(int)
def by_name(str)

✌️
2021-05-29 10:49:39 +02:00

125 lines
4.2 KiB
Python

import pickle
from pathlib import Path
from collections import defaultdict
from stable_baselines3.common.callbacks import BaseCallback
from environments.logging.plotting import prepare_plot
class FactoryMonitor:
def __init__(self, env):
self._env = env
self._monitor = defaultdict(lambda: defaultdict(lambda: 0))
self._last_vals = defaultdict(lambda: 0)
def __iter__(self):
for key, value in self._monitor.items():
yield key, dict(value)
def add(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = self._last_vals[key] + value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def set(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def remove(self, key, value, step=None):
assert step is None or step >= 1 # Is this good practice?
step = step or self._env.steps
self._last_vals[key] = self._last_vals[key] - value
self._monitor[key][step] = self._last_vals[key]
return self._last_vals[key]
def to_dict(self):
return dict(self)
def to_pd_dataframe(self):
import pandas as pd
df = pd.DataFrame.from_dict(self.to_dict())
df.fillna(0)
return df
def reset(self):
raise RuntimeError("DO NOT DO THIS! Always initalize a new Monitor per Env-Run.")
class MonitorCallback(BaseCallback):
ext = 'png'
def __init__(self, env, filepath=Path('debug_out/monitor.pick'), plotting=True):
super(MonitorCallback, self).__init__()
self.filepath = Path(filepath)
self._monitor_list = list()
self.env = env
self.plotting = plotting
self.started = False
self.closed = False
@property
def monitor_as_df_list(self):
return [x.to_pd_dataframe() for x in self._monitor_list]
def __enter__(self):
self._on_training_start()
def __exit__(self, exc_type, exc_val, exc_tb):
self._on_training_end()
def _on_training_start(self) -> None:
if self.started:
pass
else:
self.filepath.parent.mkdir(exist_ok=True, parents=True)
self.started = True
pass
def _on_training_end(self) -> None:
if self.closed:
pass
else:
# self.out_file.unlink(missing_ok=True)
with self.filepath.open('wb') as f:
pickle.dump(self.monitor_as_df_list, f, protocol=pickle.HIGHEST_PROTOCOL)
if self.plotting:
print('Monitor files were dumped to disk, now plotting....')
# %% Imports
import pandas as pd
# %% Load MonitorList from Disk
with self.filepath.open('rb') as f:
monitor_list = pickle.load(f)
df = None
for m_idx, monitor in enumerate(monitor_list):
monitor['episode'] = m_idx
if df is None:
df = pd.DataFrame(columns=monitor.columns)
for _, row in monitor.iterrows():
df.loc[df.shape[0]] = row
if df is None: # The env exited premature, we catch it.
self.closed = True
return
for column in list(df.columns):
if column != 'episode':
df[f'{column}_roll'] = df[column].rolling(window=50).mean()
# result.tail()
prepare_plot(filepath=self.filepath, results_df=df.filter(regex=(".+_roll")), tag='monitor')
print('Plotting done.')
self.closed = True
def _on_step(self) -> bool:
if self.locals['dones'].item():
self._monitor_list.append(self.env.monitor)
else:
pass
return True