2021-10-04 17:53:19 +02:00

116 lines
4.8 KiB
Python

import warnings
from pathlib import Path
import time
from stable_baselines3.common.callbacks import CallbackList
from stable_baselines3.common.vec_env import SubprocVecEnv
from environments.factory.factory_dirt_item import DirtItemFactory
from environments.factory.factory_item import ItemFactory, ItemProperties
from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.logging.monitor import MonitorCallback
from environments.logging.recorder import RecorderCallback
from environments.utility_classes import MovementProperties
from plotting.compare_runs import compare_seed_runs, compare_model_runs
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
def make_env(env_kwargs_dict):
def _init():
with DirtFactory(**env_kwargs_dict) as init_env:
return init_env
return _init
if __name__ == '__main__':
# combine_runs(Path('debug_out') / 'A2C_1630314192')
# exit()
# compare_runs(Path('debug_out'), 1623052687, ['step_reward'])
# exit()
from stable_baselines3 import PPO, DQN, A2C
# from algorithms.reg_dqn import RegDQN
# from sb3_contrib import QRDQN
dirt_props = DirtProperties(clean_amount=2, gain_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=16, max_spawn_ratio=0.05,
dirt_smear_amount=0.0, agent_can_interact=True)
item_props = ItemProperties(n_items=10, agent_can_interact=True,
spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
train_steps = 5e6
time_stamp = int(time.time())
out_path = None
for modeL_type in [A2C, PPO, DQN]: # ,RegDQN, QRDQN]:
for seed in range(3):
env_kwargs = dict(n_agents=1,
# item_properties=item_props,
dirt_properties=dirt_props,
movement_properties=move_props,
pomdp_r=2, max_steps=1000, parse_doors=False,
level_name='rooms', frames_to_stack=4,
omit_agent_in_obs=True, combin_agent_obs=True, record_episodes=False,
cast_shadows=True, doors_have_area=False, env_seed=seed, verbose=False,
)
if modeL_type.__name__ in ["PPO", "A2C"]:
kwargs = dict(ent_coef=0.01)
env = SubprocVecEnv([make_env(env_kwargs) for _ in range(10)], start_method="spawn")
elif modeL_type.__name__ in ["RegDQN", "DQN", "QRDQN"]:
env = make_env(env_kwargs)()
kwargs = dict(buffer_size=50000,
learning_starts=64,
batch_size=64,
target_update_interval=5000,
exploration_fraction=0.25,
exploration_final_eps=0.025
)
else:
raise NameError(f'The model "{modeL_type.__name__}" has the wrong name.')
model = modeL_type("MlpPolicy", env, verbose=1, seed=seed, device='cpu', **kwargs)
out_path = Path('debug_out') / f'{model.__class__.__name__}_{time_stamp}'
# identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
out_path /= identifier
callbacks = CallbackList(
[MonitorCallback(filepath=out_path / f'monitor_{identifier}.pick'),
RecorderCallback(filepath=out_path / f'recorder_{identifier}.json', occupation_map=False,
trajectory_map=False
)]
)
model.learn(total_timesteps=int(train_steps), callback=callbacks)
save_path = out_path / f'model_{identifier}.zip'
save_path.parent.mkdir(parents=True, exist_ok=True)
model.save(save_path)
param_path = out_path.parent / f'env_{model.__class__.__name__}_{time_stamp}.json'
try:
env.env_method('save_params', param_path)
except AttributeError:
env.save_params(param_path)
print("Model Trained and saved")
print("Model Group Done.. Plotting...")
if out_path:
compare_seed_runs(out_path.parent)
print("All Models Done... Evaluating")
if out_path:
compare_model_runs(Path('debug_out'), time_stamp, 'step_reward')