mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-22 14:56:43 +02:00
223 lines
9.8 KiB
Python
223 lines
9.8 KiB
Python
import re
|
|
from collections import defaultdict
|
|
from typing import Dict, List
|
|
|
|
import numpy as np
|
|
|
|
from marl_factory_grid.environment import constants as c
|
|
from marl_factory_grid.environment.entity.object import Object
|
|
from marl_factory_grid.environment.groups.utils import Combined
|
|
from marl_factory_grid.utils.utility_classes import Floor
|
|
from marl_factory_grid.utils.ray_caster import RayCaster
|
|
from marl_factory_grid.utils.states import Gamestate
|
|
from marl_factory_grid.utils import helpers as h
|
|
|
|
|
|
class OBSBuilder(object):
|
|
default_obs = [c.WALLS, c.OTHERS]
|
|
|
|
@property
|
|
def pomdp_d(self):
|
|
if self.pomdp_r:
|
|
return (self.pomdp_r * 2) + 1
|
|
else:
|
|
return 0
|
|
|
|
def __init__(self, level_shape: np.size, state: Gamestate, pomdp_r: int):
|
|
self._curr_env_step = None
|
|
self.all_obs = dict()
|
|
self.light_blockers = defaultdict(lambda: False)
|
|
self.positional = defaultdict(lambda: False)
|
|
self.non_positional = defaultdict(lambda: False)
|
|
self.ray_caster = dict()
|
|
|
|
self.level_shape = level_shape
|
|
self.pomdp_r = pomdp_r
|
|
self.obs_shape = (self.pomdp_d, self.pomdp_d) if self.pomdp_r else self.level_shape
|
|
self.size = np.prod(self.obs_shape)
|
|
|
|
self.obs_layers = dict()
|
|
|
|
self.reset_struc_obs_block(state)
|
|
self.curr_lightmaps = dict()
|
|
self._floortiles = defaultdict(list, {pos: [Floor(*pos)] for pos in state.entities.floorlist})
|
|
|
|
def reset_struc_obs_block(self, state):
|
|
self._curr_env_step = state.curr_step
|
|
# Construct an empty obs (array) for possible placeholders
|
|
self.all_obs[c.PLACEHOLDER] = np.full(self.obs_shape, 0, dtype=float)
|
|
# Fill the all_obs-dict with all available entities
|
|
self.all_obs.update({key: obj for key, obj in state.entities.obs_pairs})
|
|
return True
|
|
|
|
def observation_space(self, state):
|
|
from gymnasium.spaces import Tuple, Box
|
|
obsn = self.refresh_and_build_for_all(state)
|
|
if len(state[c.AGENT]) == 1:
|
|
space = Box(low=0, high=1, shape=next(x for x in obsn.values()).shape, dtype=np.float32)
|
|
else:
|
|
space = Tuple([Box(low=0, high=1, shape=obs.shape, dtype=np.float32) for obs in obsn.values()])
|
|
return space
|
|
|
|
def named_observation_space(self, state):
|
|
return self.refresh_and_build_for_all(state)
|
|
|
|
def refresh_and_build_for_all(self, state) -> (dict, dict):
|
|
self.reset_struc_obs_block(state)
|
|
return {agent.name: self.build_for_agent(agent, state)[0] for agent in state[c.AGENT]}
|
|
|
|
def refresh_and_build_named_for_all(self, state) -> Dict[str, Dict[str, np.ndarray]]:
|
|
self.reset_struc_obs_block(state)
|
|
named_obs_dict = {}
|
|
for agent in state[c.AGENT]:
|
|
obs, names = self.build_for_agent(agent, state)
|
|
named_obs_dict[agent.name] = {'observation': obs, 'names': names}
|
|
return named_obs_dict
|
|
|
|
def place_entity_in_observation(self, obs_array, agent, e):
|
|
x, y = (e.x - agent.x) + self.pomdp_r, (e.y - agent.y) + self.pomdp_r
|
|
if not min([y, x]) < 0:
|
|
try:
|
|
obs_array[x, y] += e.encoding
|
|
except IndexError:
|
|
# Seemded to be visible but is out of range
|
|
pass
|
|
pass
|
|
|
|
def build_for_agent(self, agent, state) -> (List[str], np.ndarray):
|
|
assert self._curr_env_step == state.curr_step, (
|
|
"The observation objekt has not been reset this state! Call 'reset_struc_obs_block(state)'"
|
|
)
|
|
try:
|
|
agent_want_obs = self.obs_layers[agent.name]
|
|
except KeyError:
|
|
self._sort_and_name_observation_conf(agent)
|
|
agent_want_obs = self.obs_layers[agent.name]
|
|
|
|
# Handle in-grid observations aka visible observations (Things on the map, with pos)
|
|
visible_entities = self.ray_caster[agent.name].visible_entities(state.entities.pos_dict)
|
|
pre_sort_obs = defaultdict(lambda: np.zeros(self.obs_shape))
|
|
if self.pomdp_r:
|
|
for e in set(visible_entities):
|
|
self.place_entity_in_observation(pre_sort_obs[e.obs_tag], agent, e)
|
|
else:
|
|
for e in set(visible_entities):
|
|
pre_sort_obs[e.obs_tag][e.x, e.y] += e.encoding
|
|
|
|
pre_sort_obs = dict(pre_sort_obs)
|
|
obs = np.zeros((len(agent_want_obs), self.obs_shape[0], self.obs_shape[1]))
|
|
|
|
for idx, l_name in enumerate(agent_want_obs):
|
|
try:
|
|
obs[idx] = pre_sort_obs[l_name]
|
|
except KeyError:
|
|
if c.COMBINED in l_name:
|
|
if combined := [pre_sort_obs[x] for x in self.all_obs[f'{c.COMBINED}({agent.name})'].names
|
|
if x in pre_sort_obs]:
|
|
obs[idx] = np.sum(combined, axis=0)
|
|
elif l_name == c.PLACEHOLDER:
|
|
obs[idx] = self.all_obs[c.PLACEHOLDER]
|
|
else:
|
|
try:
|
|
e = self.all_obs[l_name]
|
|
except KeyError:
|
|
try:
|
|
# Look for bound entity REPRs!
|
|
pattern = re.compile(f'{re.escape(l_name)}'
|
|
f'{re.escape("[")}(.*){re.escape("]")}'
|
|
f'{re.escape("(")}{re.escape(agent.name)}{re.escape(")")}')
|
|
name = next((key for key, val in self.all_obs.items()
|
|
if pattern.search(str(val)) and isinstance(val, Object)), None)
|
|
e = self.all_obs[name]
|
|
except KeyError:
|
|
try:
|
|
e = next(v for k, v in self.all_obs.items() if l_name in k and agent.name in k)
|
|
except StopIteration:
|
|
print(f'# Check for spelling errors!')
|
|
print(f'# No combination of "{l_name}" and "{agent.name}" could not be found in:')
|
|
print(f'# {list(dict(self.all_obs).keys())}')
|
|
print('#')
|
|
print('# exiting...')
|
|
print('#')
|
|
exit(-99999)
|
|
|
|
try:
|
|
positional = e.var_has_position
|
|
except AttributeError:
|
|
positional = False
|
|
if positional:
|
|
# Seems to be not visible, so just skip it
|
|
# obs[idx] = np.zeros((self.pomdp_d, self.pomdp_d))
|
|
# All good
|
|
pass
|
|
else:
|
|
try:
|
|
v = e.encodings
|
|
except AttributeError:
|
|
try:
|
|
v = e.encoding
|
|
except AttributeError:
|
|
raise AttributeError(f'This env. expects Entity-Clases to report their "encoding"')
|
|
try:
|
|
np.put(obs[idx], range(len(v)), v, mode='raise')
|
|
except TypeError:
|
|
np.put(obs[idx], 0, v, mode='raise')
|
|
except IndexError:
|
|
raise ValueError(f'Max(obs.size) for {e.name}: {obs[idx].size}, but was: {len(v)}.')
|
|
if self.pomdp_r:
|
|
try:
|
|
light_map = np.zeros(self.obs_shape)
|
|
visible_floor = self.ray_caster[agent.name].visible_entities(self._floortiles, reset_cache=False)
|
|
|
|
for f in set(visible_floor):
|
|
self.place_entity_in_observation(light_map, agent, f)
|
|
# else:
|
|
# for f in set(visible_floor):
|
|
# light_map[f.x, f.y] += f.encoding
|
|
self.curr_lightmaps[agent.name] = light_map
|
|
except (KeyError, ValueError):
|
|
pass
|
|
return obs, self.obs_layers[agent.name]
|
|
|
|
def _sort_and_name_observation_conf(self, agent):
|
|
"""
|
|
Builds the useable observation scheme per agent from conf.yaml.
|
|
:param agent:
|
|
:return:
|
|
"""
|
|
# Fixme: no asymetric shapes possible.
|
|
self.ray_caster[agent.name] = RayCaster(agent, min(self.obs_shape))
|
|
obs_layers = []
|
|
|
|
for obs_str in agent.observations:
|
|
if isinstance(obs_str, dict):
|
|
obs_str, vals = h.get_first(obs_str.items())
|
|
else:
|
|
vals = None
|
|
if obs_str == c.SELF:
|
|
obs_layers.append(agent.name)
|
|
elif obs_str == c.DEFAULTS:
|
|
obs_layers.extend(self.default_obs)
|
|
elif obs_str == c.COMBINED:
|
|
if isinstance(vals, str):
|
|
vals = [vals]
|
|
names = list()
|
|
for val in vals:
|
|
if val == c.SELF:
|
|
names.append(agent.name)
|
|
elif val == c.OTHERS:
|
|
names.extend([x.name for x in agent.collection if x.name != agent.name])
|
|
else:
|
|
names.append(val)
|
|
combined = Combined(names, self.size, identifier=agent.name)
|
|
self.all_obs[combined.name] = combined
|
|
obs_layers.append(combined.name)
|
|
elif obs_str == c.OTHERS:
|
|
obs_layers.extend([x for x in self.all_obs if x != agent.name and x.startswith(f'{c.AGENT}[')])
|
|
elif obs_str == c.AGENT:
|
|
obs_layers.extend([x for x in self.all_obs if x.startswith(f'{c.AGENT}[')])
|
|
else:
|
|
obs_layers.append(obs_str)
|
|
self.obs_layers[agent.name] = obs_layers
|
|
self.curr_lightmaps[agent.name] = np.zeros(self.obs_shape)
|