2023-11-10 09:29:54 +01:00

86 lines
2.6 KiB
Python

from pathlib import Path
import numpy as np
import torch
import yaml
def load_class(classname):
from importlib import import_module
module_path, class_name = classname.rsplit(".", 1)
module = import_module(module_path)
c = getattr(module, class_name)
return c
def instantiate_class(arguments):
from importlib import import_module
d = dict(arguments)
classname = d["classname"]
del d["classname"]
module_path, class_name = classname.rsplit(".", 1)
module = import_module(module_path)
c = getattr(module, class_name)
return c(**d)
def get_class(arguments):
from importlib import import_module
if isinstance(arguments, dict):
classname = arguments["classname"]
module_path, class_name = classname.rsplit(".", 1)
module = import_module(module_path)
c = getattr(module, class_name)
return c
else:
classname = arguments.classname
module_path, class_name = classname.rsplit(".", 1)
module = import_module(module_path)
c = getattr(module, class_name)
return c
def get_arguments(arguments):
d = dict(arguments)
if "classname" in d:
del d["classname"]
return d
def load_yaml_file(path: Path):
with path.open() as stream:
cfg = yaml.load(stream, Loader=yaml.FullLoader)
return cfg
def add_env_props(cfg):
env = instantiate_class(cfg['environment'].copy())
cfg['agent'].update(dict(observation_size=list(env.observation_space.shape),
n_actions=env.action_space.n))
class Checkpointer(object):
def __init__(self, experiment_name, root, config, total_steps, n_checkpoints):
self.path = root / experiment_name
self.checkpoint_indices = list(np.linspace(1, total_steps, n_checkpoints, dtype=int) - 1)
self.__current_checkpoint = 0
self.__current_step = 0
self.path.mkdir(exist_ok=True, parents=True)
with (self.path / 'config.yaml').open('w') as outfile:
yaml.dump(config, outfile, default_flow_style=False)
def save_experiment(self, name: str, model):
cpt_path = self.path / f'checkpoint_{self.__current_checkpoint}'
cpt_path.mkdir(exist_ok=True, parents=True)
torch.save(model.state_dict(), cpt_path / f'{name}.pt')
def step(self, to_save):
if self.__current_step in self.checkpoint_indices:
print(f'Checkpointing #{self.__current_checkpoint}')
for name, model in to_save:
self.save_experiment(name, model)
self.__current_checkpoint += 1
self.__current_step += 1