2021-09-08 16:24:14 +02:00

131 lines
5.2 KiB
Python

import itertools
import random
from pathlib import Path
import simplejson
from stable_baselines3 import DQN, PPO, A2C
from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.factory.factory_item import ItemProperties, ItemFactory
if __name__ == '__main__':
"""
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
but never saw each other in training.
Those agents learned
We start with training a single policy on a single task (dirt cleanup / item pickup).
Then multiple agent equipped with the same policy are deployed in the same environment.
There are further distinctions to be made:
1. No Observation - ['no_obs']:
- Agent do not see each other but their consequences of their combined actions
- Agents can collide
2. Observation in seperate slice - [['seperate_0'], ['seperate_1'], ['seperate_N']]:
- Agents see other entitys on a seperate slice
- This slice has been filled with $0 | 1 | \mathbb{N}(0, 1)$
-- Depending ob the fill value, agents will react diffently
-> TODO: Test this!
3. Observation in level slice - ['in_lvl_obs']:
- This tells the agent to treat other agents as obstacle.
- However, the state space is altered since moving obstacles are not part the original agent observation.
- We are out of distribution.
"""
def bundle_model(model_class):
if model_class.__class__.__name__ in ["PPO", "A2C"]:
kwargs = dict(ent_coef=0.01)
elif model_class.__class__.__name__ in ["RegDQN", "DQN", "QRDQN"]:
kwargs = dict(buffer_size=50000,
learning_starts=64,
batch_size=64,
target_update_interval=5000,
exploration_fraction=0.25,
exploration_final_eps=0.025
)
return lambda: model_class(kwargs)
if __name__ == '__main__':
# Define a global studi save path
study_root_path = Path(Path(__file__).stem) / 'out'
# TODO: Define Global Env Parameters
factory_kwargs = {
}
# TODO: Define global model parameters
# TODO: Define parameters for both envs
dirt_props = DirtProperties()
item_props = ItemProperties()
# Bundle both environments with global kwargs and parameters
env_bundles = [lambda: ('dirt', DirtFactory(factory_kwargs, dirt_properties=dirt_props)),
lambda: ('item', ItemFactory(factory_kwargs, item_properties=item_props))]
# Define parameter versions according with #1,2[1,0,N],3
observation_modes = ['no_obs', 'seperate_0', 'seperate_1', 'seperate_N', 'in_lvl_obs']
# Define RL-Models
model_bundles = [bundle_model(model) for model in [A2C, PPO, DQN]]
# Zip parameters, parameter versions, Env Classes and models
combinations = itertools.product(model_bundles, env_bundles)
# Train starts here ############################################################
# Build Major Loop
for model, (env_identifier, env_bundle) in combinations:
for observation_mode in observation_modes:
# TODO: Create an identifier, which is unique for every combination and easy to read in filesystem
identifier = f'{model.name}_{observation_mode}_{env_identifier}'
# Train each combination per seed
for seed in range(3):
# TODO: Output folder
# TODO: Monitor Init
# TODO: Env Init
# TODO: Model Init
# TODO: Model train
# TODO: Model save
pass
# TODO: Seed Compare Plot
# Train ends here ############################################################
# Evaluation starts here #####################################################
# Iterate Observation Modes
for observation_mode in observation_modes:
# TODO: For trained policy in study_root_path / identifier
for policy_group in (x for x in study_root_path.iterdir() if x.is_dir()):
# TODO: Pick random seed or iterate over available seeds
policy_seed = next((y for y in study_root_path.iterdir() if y.is_dir()))
# TODO: retrieve model class
# TODO: Load both agents
models = []
# TODO: Evaluation Loop for i in range(100) Episodes
for episode in range(100):
with next(policy_seed.glob('*.yaml')).open('r') as f:
env_kwargs = simplejson.load(f)
# TODO: Monitor Init
env = None # TODO: Init Env
for step in range(400):
random_actions = [[random.randint(0, env.n_actions) for _ in range(len(models))] for _ in range(200)]
env_state = env.reset()
rew = 0
for agent_i_action in random_actions:
env_state, step_r, done_bool, info_obj = env.step(agent_i_action)
rew += step_r
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# TODO: Plotting
pass