mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 20:47:26 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			210 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from collections import OrderedDict
 | |
| from dataclasses import dataclass
 | |
| from pathlib import Path
 | |
| from typing import List, Union, NamedTuple
 | |
| import random
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| from environments.factory.base_factory import BaseFactory, AgentState, MovementProperties
 | |
| from environments import helpers as h
 | |
| 
 | |
| from environments.logging.monitor import MonitorCallback
 | |
| from environments.factory.renderer import Renderer, Entity
 | |
| 
 | |
| DIRT_INDEX = -1
 | |
| CLEAN_UP_ACTION = 'clean_up'
 | |
| 
 | |
| 
 | |
| class DirtProperties(NamedTuple):
 | |
|     clean_amount: int = 2            # How much does the robot clean with one action.
 | |
|     max_spawn_ratio: float = 0.2       # On max how much tiles does the dirt spawn in percent.
 | |
|     gain_amount: float = 0.5           # How much dirt does spawn per tile
 | |
|     spawn_frequency: int = 5         # Spawn Frequency in Steps
 | |
|     max_local_amount: int = 1        # Max dirt amount per tile.
 | |
|     max_global_amount: int = 20      # Max dirt amount in the whole environment.
 | |
| 
 | |
| 
 | |
| class SimpleFactory(BaseFactory):
 | |
| 
 | |
|     @property
 | |
|     def additional_actions(self) -> Union[str, List[str]]:
 | |
|         return CLEAN_UP_ACTION
 | |
| 
 | |
|     def _is_clean_up_action(self, action):
 | |
|         return self._actions[action] == CLEAN_UP_ACTION
 | |
| 
 | |
|     def __init__(self, *args, dirt_properties: DirtProperties, verbose=False, **kwargs):
 | |
|         self.dirt_properties = dirt_properties
 | |
|         self.verbose = verbose
 | |
|         self.max_dirt = 20
 | |
|         super(SimpleFactory, self).__init__(*args, additional_slices='dirt', **kwargs)
 | |
|         self._renderer = None  # expensive - don't use it when not required !
 | |
| 
 | |
|     def render(self):
 | |
| 
 | |
|         if not self._renderer:  # lazy init
 | |
|             height, width = self._state.shape[1:]
 | |
|             self._renderer = Renderer(width, height, view_radius=self.pomdp_radius)
 | |
| 
 | |
|         dirt      = [Entity('dirt', [x, y], min(0.15 + self._state[DIRT_INDEX, x, y], 1.5), 'scale')
 | |
|                      for x, y in np.argwhere(self._state[DIRT_INDEX] > h.IS_FREE_CELL)]
 | |
|         walls     = [Entity('wall', pos) for pos in np.argwhere(self._state[h.LEVEL_IDX] > h.IS_FREE_CELL)]
 | |
| 
 | |
|         def asset_str(agent):
 | |
|             if any([x is None for x in [self._state_slices[j] for j in agent.collisions]]):
 | |
|                 print('error')
 | |
|             cols = ' '.join([self._state_slices[j] for j in agent.collisions])
 | |
|             if 'agent' in cols:
 | |
|                 return 'agent_collision'
 | |
|             elif not agent.action_valid or 'level' in cols or 'agent' in cols:
 | |
|                 return f'agent{agent.i + 1}violation'
 | |
|             elif self._is_clean_up_action(agent.action):
 | |
|                 return f'agent{agent.i + 1}valid'
 | |
|             else:
 | |
|                 return f'agent{agent.i + 1}'
 | |
| 
 | |
|         agents = {f'agent{i+1}': [Entity(asset_str(agent), agent.pos)]
 | |
|                   for i, agent in enumerate(self._agent_states)}
 | |
|         self._renderer.render(OrderedDict(dirt=dirt, wall=walls, **agents))
 | |
| 
 | |
|     def spawn_dirt(self) -> None:
 | |
|         if not np.argwhere(self._state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0] > self.dirt_properties.max_global_amount:
 | |
|             free_for_dirt = self.free_cells(excluded_slices=DIRT_INDEX)
 | |
| 
 | |
|             # randomly distribute dirt across the grid
 | |
|             n_dirt_tiles = int(random.uniform(0, self.dirt_properties.max_spawn_ratio) * len(free_for_dirt))
 | |
|             for x, y in free_for_dirt[:n_dirt_tiles]:
 | |
|                 new_value = self._state[DIRT_INDEX, x, y] + self.dirt_properties.gain_amount
 | |
|                 self._state[DIRT_INDEX, x, y] = max(new_value, self.dirt_properties.max_local_amount)
 | |
| 
 | |
|         else:
 | |
|             pass
 | |
| 
 | |
|     def clean_up(self, pos: (int, int)) -> ((int, int), bool):
 | |
|         new_dirt_amount = self._state[DIRT_INDEX][pos] - self.dirt_properties.clean_amount
 | |
|         cleanup_was_sucessfull: bool
 | |
|         if self._state[DIRT_INDEX][pos] == h.IS_FREE_CELL:
 | |
|             cleanup_was_sucessfull = False
 | |
|             return pos, cleanup_was_sucessfull
 | |
|         else:
 | |
|             cleanup_was_sucessfull = True
 | |
|             self._state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL)
 | |
|             return pos, cleanup_was_sucessfull
 | |
| 
 | |
|     def step(self, actions):
 | |
|         _, r, done, info = super(SimpleFactory, self).step(actions)
 | |
|         if not self._next_dirt_spawn:
 | |
|             self.spawn_dirt()
 | |
|             self._next_dirt_spawn = self.dirt_properties.spawn_frequency
 | |
|         else:
 | |
|             self._next_dirt_spawn -= 1
 | |
|         obs = self._return_state()
 | |
|         return obs, r, done, info
 | |
| 
 | |
|     def do_additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
 | |
|         if action != self._is_moving_action(action):
 | |
|             if self._is_clean_up_action(action):
 | |
|                 agent_i_pos = self.agent_i_position(agent_i)
 | |
|                 _, valid = self.clean_up(agent_i_pos)
 | |
|                 return agent_i_pos, valid
 | |
|             else:
 | |
|                 raise RuntimeError('This should not happen!!!')
 | |
|         else:
 | |
|             raise RuntimeError('This should not happen!!!')
 | |
| 
 | |
|     def reset(self) -> (np.ndarray, int, bool, dict):
 | |
|         _ = super().reset()  # state, reward, done, info ... =
 | |
|         dirt_slice = np.zeros((1, *self._state.shape[1:]))
 | |
|         self._state = np.concatenate((self._state, dirt_slice))  # dirt is now the last slice
 | |
|         self.spawn_dirt()
 | |
|         self._next_dirt_spawn = self.dirt_properties.spawn_frequency
 | |
|         obs = self._return_state()
 | |
|         return obs
 | |
| 
 | |
|     def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
 | |
|         # TODO: What reward to use?
 | |
|         current_dirt_amount = self._state[DIRT_INDEX].sum()
 | |
|         dirty_tiles = np.argwhere(self._state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0]
 | |
|         info_dict = dict()
 | |
| 
 | |
|         try:
 | |
|             # penalty = current_dirt_amount
 | |
|             reward = 0
 | |
|         except (ZeroDivisionError, RuntimeWarning):
 | |
|             reward = 0
 | |
| 
 | |
|         for agent_state in agent_states:
 | |
|             cols = agent_state.collisions
 | |
| 
 | |
|             list_of_collisions = [self._state_slices[entity] for entity in cols
 | |
|                                   if entity != self._state_slices.by_name("dirt")]
 | |
| 
 | |
|             if list_of_collisions:
 | |
|                 self.print(f't = {self.steps}\tAgent {agent_state.i} has collisions with '
 | |
|                            f'{list_of_collisions}')
 | |
| 
 | |
|             if self._is_clean_up_action(agent_state.action):
 | |
|                 if agent_state.action_valid:
 | |
|                     reward += 1
 | |
|                     self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
 | |
|                     info_dict.update(dirt_cleaned=1)
 | |
|                 else:
 | |
|                     reward -= 0.01
 | |
|                     self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
 | |
|                                f'at {agent_state.pos}, but was unsucsessfull.')
 | |
|                     info_dict.update(failed_cleanup_attempt=1)
 | |
| 
 | |
|             elif self._is_moving_action(agent_state.action):
 | |
|                 if agent_state.action_valid:
 | |
|                     # info_dict.update(movement=1)
 | |
|                     reward -= 0.00
 | |
|                 else:
 | |
|                     # info_dict.update(collision=1)
 | |
|                     # self.print('collision')
 | |
|                     reward -= 0.01
 | |
| 
 | |
|             else:
 | |
|                 info_dict.update(no_op=1)
 | |
|                 reward -= 0.00
 | |
| 
 | |
|             for entity in list_of_collisions:
 | |
|                 info_dict.update({f'agent_{agent_state.i}_vs_{entity}': 1})
 | |
| 
 | |
|         info_dict.update(dirt_amount=current_dirt_amount)
 | |
|         info_dict.update(dirty_tile_count=dirty_tiles)
 | |
|         self.print(f"reward is {reward}")
 | |
|         # Potential based rewards ->
 | |
|         #  track the last reward , minus the current reward = potential
 | |
|         return reward, info_dict
 | |
| 
 | |
|     def print(self, string):
 | |
|         if self.verbose:
 | |
|             print(string)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     render = True
 | |
|     import yaml
 | |
|     with Path(r'C:\Users\steff\projects\f_iks\debug_out\yaml.txt').open('r') as f:
 | |
|         env_kwargs = yaml.load(f)
 | |
|     factory = SimpleFactory(**env_kwargs)
 | |
| 
 | |
|     # dirt_props = DirtProperties()
 | |
|     # move_props = MovementProperties(allow_diagonal_movement=False, allow_no_op=False)
 | |
|     # factory = SimpleFactory(n_agents=2, dirt_properties=dirt_props, movement_properties=move_props, level='rooms',
 | |
|     #                         pomdp_radius=2)
 | |
| 
 | |
|     n_actions = factory.action_space.n - 1
 | |
| 
 | |
|     for epoch in range(100):
 | |
|         random_actions = [[random.randint(0, n_actions) for _ in range(factory.n_agents)] for _ in range(200)]
 | |
|         env_state = factory.reset()
 | |
|         for agent_i_action in random_actions:
 | |
|             env_state, reward, done_bool, info_obj = factory.step(agent_i_action)
 | |
|             if render:
 | |
|                 factory.render()
 | |
|             if done_bool:
 | |
|                 break
 | |
|         print(f'Factory run {epoch} done, reward is:\n    {reward}')
 | 
