mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 23:36:43 +02:00
210 lines
8.6 KiB
Python
210 lines
8.6 KiB
Python
from collections import OrderedDict
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import List, Union, NamedTuple
|
|
import random
|
|
|
|
import numpy as np
|
|
|
|
from environments.factory.base_factory import BaseFactory, AgentState, MovementProperties
|
|
from environments import helpers as h
|
|
|
|
from environments.logging.monitor import MonitorCallback
|
|
from environments.factory.renderer import Renderer, Entity
|
|
|
|
DIRT_INDEX = -1
|
|
CLEAN_UP_ACTION = 'clean_up'
|
|
|
|
|
|
class DirtProperties(NamedTuple):
|
|
clean_amount: int = 2 # How much does the robot clean with one action.
|
|
max_spawn_ratio: float = 0.2 # On max how much tiles does the dirt spawn in percent.
|
|
gain_amount: float = 0.5 # How much dirt does spawn per tile
|
|
spawn_frequency: int = 5 # Spawn Frequency in Steps
|
|
max_local_amount: int = 1 # Max dirt amount per tile.
|
|
max_global_amount: int = 20 # Max dirt amount in the whole environment.
|
|
|
|
|
|
class SimpleFactory(BaseFactory):
|
|
|
|
@property
|
|
def additional_actions(self) -> Union[str, List[str]]:
|
|
return CLEAN_UP_ACTION
|
|
|
|
def _is_clean_up_action(self, action):
|
|
return self._actions[action] == CLEAN_UP_ACTION
|
|
|
|
def __init__(self, *args, dirt_properties: DirtProperties, verbose=False, **kwargs):
|
|
self.dirt_properties = dirt_properties
|
|
self.verbose = verbose
|
|
self.max_dirt = 20
|
|
super(SimpleFactory, self).__init__(*args, additional_slices='dirt', **kwargs)
|
|
self._renderer = None # expensive - don't use it when not required !
|
|
|
|
def render(self):
|
|
|
|
if not self._renderer: # lazy init
|
|
height, width = self._state.shape[1:]
|
|
self._renderer = Renderer(width, height, view_radius=self.pomdp_radius)
|
|
|
|
dirt = [Entity('dirt', [x, y], min(0.15 + self._state[DIRT_INDEX, x, y], 1.5), 'scale')
|
|
for x, y in np.argwhere(self._state[DIRT_INDEX] > h.IS_FREE_CELL)]
|
|
walls = [Entity('wall', pos) for pos in np.argwhere(self._state[h.LEVEL_IDX] > h.IS_FREE_CELL)]
|
|
|
|
def asset_str(agent):
|
|
if any([x is None for x in [self._state_slices[j] for j in agent.collisions]]):
|
|
print('error')
|
|
cols = ' '.join([self._state_slices[j] for j in agent.collisions])
|
|
if 'agent' in cols:
|
|
return 'agent_collision'
|
|
elif not agent.action_valid or 'level' in cols or 'agent' in cols:
|
|
return f'agent{agent.i + 1}violation'
|
|
elif self._is_clean_up_action(agent.action):
|
|
return f'agent{agent.i + 1}valid'
|
|
else:
|
|
return f'agent{agent.i + 1}'
|
|
|
|
agents = {f'agent{i+1}': [Entity(asset_str(agent), agent.pos)]
|
|
for i, agent in enumerate(self._agent_states)}
|
|
self._renderer.render(OrderedDict(dirt=dirt, wall=walls, **agents))
|
|
|
|
def spawn_dirt(self) -> None:
|
|
if not np.argwhere(self._state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0] > self.dirt_properties.max_global_amount:
|
|
free_for_dirt = self.free_cells(excluded_slices=DIRT_INDEX)
|
|
|
|
# randomly distribute dirt across the grid
|
|
n_dirt_tiles = int(random.uniform(0, self.dirt_properties.max_spawn_ratio) * len(free_for_dirt))
|
|
for x, y in free_for_dirt[:n_dirt_tiles]:
|
|
new_value = self._state[DIRT_INDEX, x, y] + self.dirt_properties.gain_amount
|
|
self._state[DIRT_INDEX, x, y] = max(new_value, self.dirt_properties.max_local_amount)
|
|
|
|
else:
|
|
pass
|
|
|
|
def clean_up(self, pos: (int, int)) -> ((int, int), bool):
|
|
new_dirt_amount = self._state[DIRT_INDEX][pos] - self.dirt_properties.clean_amount
|
|
cleanup_was_sucessfull: bool
|
|
if self._state[DIRT_INDEX][pos] == h.IS_FREE_CELL:
|
|
cleanup_was_sucessfull = False
|
|
return pos, cleanup_was_sucessfull
|
|
else:
|
|
cleanup_was_sucessfull = True
|
|
self._state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL)
|
|
return pos, cleanup_was_sucessfull
|
|
|
|
def step(self, actions):
|
|
_, r, done, info = super(SimpleFactory, self).step(actions)
|
|
if not self._next_dirt_spawn:
|
|
self.spawn_dirt()
|
|
self._next_dirt_spawn = self.dirt_properties.spawn_frequency
|
|
else:
|
|
self._next_dirt_spawn -= 1
|
|
obs = self._return_state()
|
|
return obs, r, done, info
|
|
|
|
def do_additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
|
|
if action != self._is_moving_action(action):
|
|
if self._is_clean_up_action(action):
|
|
agent_i_pos = self.agent_i_position(agent_i)
|
|
_, valid = self.clean_up(agent_i_pos)
|
|
return agent_i_pos, valid
|
|
else:
|
|
raise RuntimeError('This should not happen!!!')
|
|
else:
|
|
raise RuntimeError('This should not happen!!!')
|
|
|
|
def reset(self) -> (np.ndarray, int, bool, dict):
|
|
_ = super().reset() # state, reward, done, info ... =
|
|
dirt_slice = np.zeros((1, *self._state.shape[1:]))
|
|
self._state = np.concatenate((self._state, dirt_slice)) # dirt is now the last slice
|
|
self.spawn_dirt()
|
|
self._next_dirt_spawn = self.dirt_properties.spawn_frequency
|
|
obs = self._return_state()
|
|
return obs
|
|
|
|
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
|
|
# TODO: What reward to use?
|
|
current_dirt_amount = self._state[DIRT_INDEX].sum()
|
|
dirty_tiles = np.argwhere(self._state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0]
|
|
info_dict = dict()
|
|
|
|
try:
|
|
# penalty = current_dirt_amount
|
|
reward = 0
|
|
except (ZeroDivisionError, RuntimeWarning):
|
|
reward = 0
|
|
|
|
for agent_state in agent_states:
|
|
cols = agent_state.collisions
|
|
|
|
list_of_collisions = [self._state_slices[entity] for entity in cols
|
|
if entity != self._state_slices.by_name("dirt")]
|
|
|
|
if list_of_collisions:
|
|
self.print(f't = {self.steps}\tAgent {agent_state.i} has collisions with '
|
|
f'{list_of_collisions}')
|
|
|
|
if self._is_clean_up_action(agent_state.action):
|
|
if agent_state.action_valid:
|
|
reward += 1
|
|
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
|
|
info_dict.update(dirt_cleaned=1)
|
|
else:
|
|
reward -= 0.01
|
|
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
|
|
f'at {agent_state.pos}, but was unsucsessfull.')
|
|
info_dict.update(failed_cleanup_attempt=1)
|
|
|
|
elif self._is_moving_action(agent_state.action):
|
|
if agent_state.action_valid:
|
|
# info_dict.update(movement=1)
|
|
reward -= 0.00
|
|
else:
|
|
# info_dict.update(collision=1)
|
|
# self.print('collision')
|
|
reward -= 0.01
|
|
|
|
else:
|
|
info_dict.update(no_op=1)
|
|
reward -= 0.00
|
|
|
|
for entity in list_of_collisions:
|
|
info_dict.update({f'agent_{agent_state.i}_vs_{entity}': 1})
|
|
|
|
info_dict.update(dirt_amount=current_dirt_amount)
|
|
info_dict.update(dirty_tile_count=dirty_tiles)
|
|
self.print(f"reward is {reward}")
|
|
# Potential based rewards ->
|
|
# track the last reward , minus the current reward = potential
|
|
return reward, info_dict
|
|
|
|
def print(self, string):
|
|
if self.verbose:
|
|
print(string)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
render = True
|
|
import yaml
|
|
with Path(r'C:\Users\steff\projects\f_iks\debug_out\yaml.txt').open('r') as f:
|
|
env_kwargs = yaml.load(f)
|
|
factory = SimpleFactory(**env_kwargs)
|
|
|
|
# dirt_props = DirtProperties()
|
|
# move_props = MovementProperties(allow_diagonal_movement=False, allow_no_op=False)
|
|
# factory = SimpleFactory(n_agents=2, dirt_properties=dirt_props, movement_properties=move_props, level='rooms',
|
|
# pomdp_radius=2)
|
|
|
|
n_actions = factory.action_space.n - 1
|
|
|
|
for epoch in range(100):
|
|
random_actions = [[random.randint(0, n_actions) for _ in range(factory.n_agents)] for _ in range(200)]
|
|
env_state = factory.reset()
|
|
for agent_i_action in random_actions:
|
|
env_state, reward, done_bool, info_obj = factory.step(agent_i_action)
|
|
if render:
|
|
factory.render()
|
|
if done_bool:
|
|
break
|
|
print(f'Factory run {epoch} done, reward is:\n {reward}')
|