50 lines
1.9 KiB
Python

import numpy as np
from environments.factory.base_factory import BaseFactory, FactoryMonitor
class SimpleFactory(BaseFactory):
def __init__(self, *args, max_dirt=5, **kwargs):
self.max_dirt = max_dirt
super(SimpleFactory, self).__init__(*args, **kwargs)
self.slice_strings.update({self.state.shape[0]-1: 'dirt'})
def spawn_dirt(self):
free_for_dirt = self.free_cells
for x, y in free_for_dirt[:self.max_dirt]: # randomly distribute dirt across the grid
self.state[-1, x, y] = 1
def reset(self):
state, r, done, _ = super().reset()
dirt_slice = np.zeros((1, *self.state.shape[1:]))
self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice
self.spawn_dirt()
# Always: This should return state
return self.state
def calculate_reward(self, agent_states):
for agent_state in agent_states:
collisions = agent_state.collisions
entities = [self.slice_strings[entity] for entity in collisions]
if entities:
for entity in entities:
self.monitor.add(f'agent_{agent_state.i}_collision_{entity}', 1)
print(f't = {self.steps}\tAgent {agent_state.i} has collisions with '
f'{entities}')
return 0, {}
if __name__ == '__main__':
import random
factory = SimpleFactory(n_agents=1, max_dirt=8)
monitor_list = list()
for epoch in range(100):
random_actions = [random.randint(0, 7) for _ in range(200)]
state, r, done, _ = factory.reset()
for action in random_actions:
state, r, done, info = factory.step(action)
monitor_list.append(factory.monitor)
print(f'Factory run done, reward is:\n {r}')
print(f'There have been the following collisions: \n {dict(factory.monitor)}')