marl-factory-grid/environments/factory/simple_factory_getting_dirty.py
2021-05-18 12:16:31 +02:00

146 lines
6.1 KiB
Python

from collections import OrderedDict
from dataclasses import dataclass
from typing import List
import random
import numpy as np
from environments.factory.base_factory import BaseFactory, AgentState
from environments import helpers as h
from environments.factory.renderer import Renderer
from environments.factory.renderer import Entity
DIRT_INDEX = -1
@dataclass
class DirtProperties:
clean_amount = 0.25
max_spawn_ratio = 0.1
gain_amount = 0.1
spawn_frequency = 5
class GettingDirty(BaseFactory):
def _is_clean_up_action(self, action):
# Account for NoOP; remove -1 when activating NoOP
return self.movement_actions + 1 - 1 == action
def __init__(self, *args, dirt_properties: DirtProperties, **kwargs):
self._dirt_properties = dirt_properties
super(GettingDirty, self).__init__(*args, **kwargs)
self.slice_strings.update({self.state.shape[0]-1: 'dirt'})
self.renderer = None # expensive - dont use it when not required !
def render(self):
if not self.renderer: # lazy init
height, width = self.state.shape[1:]
self.renderer = Renderer(width, height, view_radius=2)
dirt = [Entity('dirt', [x, y], min(self.state[DIRT_INDEX, x, y], 1), 'scale')
for x, y in np.argwhere(self.state[DIRT_INDEX] > h.IS_FREE_CELL)]
walls = [Entity('dirt', pos) for pos in np.argwhere(self.state[h.LEVEL_IDX] > h.IS_FREE_CELL)]
agents = [Entity('agent1', pos) for pos in np.argwhere(self.state[h.AGENT_START_IDX] > h.IS_FREE_CELL)]
self.renderer.render(OrderedDict(dirt=dirt, wall=walls, agent1=agents))
def spawn_dirt(self) -> None:
free_for_dirt = self.free_cells(excluded_slices=DIRT_INDEX)
# randomly distribute dirt across the grid
n_dirt_tiles = int(random.uniform(0, self._dirt_properties.max_spawn_ratio) * len(free_for_dirt))
for x, y in free_for_dirt[:n_dirt_tiles]:
self.state[DIRT_INDEX, x, y] += self._dirt_properties.gain_amount
def clean_up(self, pos: (int, int)) -> ((int, int), bool):
new_dirt_amount = self.state[DIRT_INDEX][pos] - self._dirt_properties.clean_amount
cleanup_was_sucessfull: bool
if self.state[DIRT_INDEX][pos] == h.IS_FREE_CELL:
cleanup_was_sucessfull = False
return pos, cleanup_was_sucessfull
else:
cleanup_was_sucessfull = True
self.state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL)
return pos, cleanup_was_sucessfull
def step(self, actions):
_, _, _, info = super(GettingDirty, self).step(actions)
if not self.next_dirt_spawn:
self.spawn_dirt()
self.next_dirt_spawn = self._dirt_properties.spawn_frequency
else:
self.next_dirt_spawn -= 1
return self.state, self.cumulative_reward, self.done, info
def additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
if action != self._is_moving_action(action):
if self._is_clean_up_action(action):
agent_i_pos = self.agent_i_position(agent_i)
_, valid = self.clean_up(agent_i_pos)
if valid:
print(f'Agent {agent_i} did just clean up some dirt at {agent_i_pos}.')
self.monitor.add('dirt_cleaned', self._dirt_properties.clean_amount)
else:
print(f'Agent {agent_i} just tried to clean up some dirt at {agent_i_pos}, but was unsucsessfull.')
self.monitor.add('failed_cleanup_attempt', 1)
return agent_i_pos, valid
else:
raise RuntimeError('This should not happen!!!')
else:
raise RuntimeError('This should not happen!!!')
def reset(self) -> (np.ndarray, int, bool, dict):
state, r, done, _ = super().reset() # state, reward, done, info ... =
dirt_slice = np.zeros((1, *self.state.shape[1:]))
self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice
self.spawn_dirt()
self.next_dirt_spawn = self._dirt_properties.spawn_frequency
return self.state, r, self.done, {}
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
# TODO: What reward to use?
current_dirt_amount = self.state[DIRT_INDEX].sum()
dirty_tiles = len(np.nonzero(self.state[DIRT_INDEX]))
this_step_reward = -(dirty_tiles / current_dirt_amount)
for agent_state in agent_states:
collisions = agent_state.collisions
print(f't = {self.steps}\tAgent {agent_state.i} has collisions with '
f'{[self.slice_strings[entity] for entity in collisions if entity != self.string_slices["dirt"]]}')
if self._is_clean_up_action(agent_state.action) and agent_state.action_valid:
this_step_reward += 1
for entity in collisions:
if entity != self.string_slices["dirt"]:
self.monitor.add(f'agent_{agent_state.i}_vs_{self.slice_strings[entity]}', 1)
self.monitor.set('dirt_amount', current_dirt_amount)
self.monitor.set('dirty_tiles', dirty_tiles)
return this_step_reward, {}
if __name__ == '__main__':
render = True
dirt_props = DirtProperties()
factory = GettingDirty(n_agents=1, dirt_properties=dirt_props)
monitor_list = list()
for epoch in range(100):
random_actions = [random.randint(0, 8) for _ in range(200)]
env_state, reward, done_bool, _ = factory.reset()
for agent_i_action in random_actions:
env_state, reward, done_bool, info_obj = factory.step(agent_i_action)
if render:
factory.render()
monitor_list.append(factory.monitor.to_pd_dataframe())
print(f'Factory run {epoch} done, reward is:\n {reward}')
from pathlib import Path
import pickle
out_path = Path('debug_out')
out_path.mkdir(exist_ok=True, parents=True)
with (out_path / 'monitor.pick').open('wb') as f:
pickle.dump(monitor_list, f, protocol=pickle.HIGHEST_PROTOCOL)