mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
258 lines
11 KiB
Python
258 lines
11 KiB
Python
import time
|
|
from typing import List, Union, NamedTuple
|
|
import random
|
|
|
|
import numpy as np
|
|
|
|
from environments.helpers import Constants as c
|
|
from environments import helpers as h
|
|
from environments.factory.base.base_factory import BaseFactory
|
|
from environments.factory.base.objects import Agent, Action, Object, Slice
|
|
from environments.factory.base.registers import Entities
|
|
|
|
from environments.factory.renderer import Renderer, Entity
|
|
from environments.utility_classes import MovementProperties
|
|
|
|
DIRT = "dirt"
|
|
CLEAN_UP_ACTION = 'clean_up'
|
|
|
|
|
|
class DirtProperties(NamedTuple):
|
|
clean_amount: int = 1 # How much does the robot clean with one actions.
|
|
max_spawn_ratio: float = 0.2 # On max how much tiles does the dirt spawn in percent.
|
|
gain_amount: float = 0.3 # How much dirt does spawn per tile
|
|
spawn_frequency: int = 5 # Spawn Frequency in Steps
|
|
max_local_amount: int = 2 # Max dirt amount per tile.
|
|
max_global_amount: int = 20 # Max dirt amount in the whole environment.
|
|
dirt_smear_amount: float = 0.2 # Agents smear dirt, when not cleaning up in place
|
|
|
|
|
|
def softmax(x):
|
|
"""Compute softmax values for each sets of scores in x."""
|
|
e_x = np.exp(x - np.max(x))
|
|
return e_x / e_x.sum()
|
|
|
|
|
|
def entropy(x):
|
|
return -(x * np.log(x + 1e-8)).sum()
|
|
|
|
|
|
# noinspection PyAttributeOutsideInit
|
|
class SimpleFactory(BaseFactory):
|
|
|
|
@property
|
|
def additional_actions(self) -> List[Object]:
|
|
return [Action(CLEAN_UP_ACTION)]
|
|
|
|
@property
|
|
def additional_entities(self) -> Union[Entities, List[Entities]]:
|
|
return []
|
|
|
|
@property
|
|
def additional_slices(self) -> List[Slice]:
|
|
return [Slice('dirt', np.zeros(self._level_shape))]
|
|
|
|
def _is_clean_up_action(self, action: Union[str, int]):
|
|
if isinstance(action, str):
|
|
action = self._actions.by_name(action)
|
|
return self._actions[action].name == CLEAN_UP_ACTION
|
|
|
|
def __init__(self, *args, dirt_properties: DirtProperties = DirtProperties(), **kwargs):
|
|
self.dirt_properties = dirt_properties
|
|
self._renderer = None # expensive - don't use it when not required !
|
|
self._dirt_rng = np.random.default_rng(kwargs.get('seed', default=time.time_ns()))
|
|
super(SimpleFactory, self).__init__(*args, **kwargs)
|
|
|
|
def _flush_state(self):
|
|
super(SimpleFactory, self)._flush_state()
|
|
self._obs_cube[self._slices.get_idx_by_name(DIRT)] = self._slices.by_name(DIRT).slice
|
|
|
|
def render(self, mode='human'):
|
|
|
|
if not self._renderer: # lazy init
|
|
height, width = self._obs_cube.shape[1:]
|
|
self._renderer = Renderer(width, height, view_radius=self.pomdp_r, fps=5)
|
|
dirt_slice = self._slices.by_name(DIRT).slice
|
|
dirt = [Entity('dirt', tile.pos, min(0.15 + dirt_slice[tile.pos], 1.5), 'scale')
|
|
for tile in [tile for tile in self._tiles if dirt_slice[tile.pos]]]
|
|
walls = [Entity('wall', pos)
|
|
for pos in np.argwhere(self._slices.by_enum(c.LEVEL).slice == c.OCCUPIED_CELL.value)]
|
|
|
|
def asset_str(agent):
|
|
# What does this abonimation do?
|
|
# if any([x is None for x in [self._slices[j] for j in agent.collisions]]):
|
|
# print('error')
|
|
col_names = [x.name for x in agent.temp_collisions]
|
|
if c.AGENT.value in col_names:
|
|
return 'agent_collision', 'blank'
|
|
elif not agent.temp_valid or c.LEVEL.name in col_names or c.AGENT.name in col_names:
|
|
return c.AGENT.value, 'invalid'
|
|
elif self._is_clean_up_action(agent.temp_action):
|
|
return c.AGENT.value, 'valid'
|
|
else:
|
|
return c.AGENT.value, 'idle'
|
|
agents = []
|
|
for i, agent in enumerate(self._agents):
|
|
name, state = asset_str(agent)
|
|
agents.append(Entity(name, agent.pos, 1, 'none', state, i+1, agent.temp_light_map))
|
|
doors = []
|
|
if self.parse_doors:
|
|
for i, door in enumerate(self._doors):
|
|
name, state = 'door_open' if door.is_open else 'door_closed', 'blank'
|
|
agents.append(Entity(name, door.pos, 1, 'none', state, i+1))
|
|
self._renderer.render(dirt+walls+agents+doors)
|
|
|
|
def spawn_dirt(self) -> None:
|
|
dirt_slice = self._slices.by_name(DIRT).slice
|
|
# dirty_tiles = [tile for tile in self._tiles if dirt_slice[tile.pos]]
|
|
curr_dirt_amount = dirt_slice.sum()
|
|
if not curr_dirt_amount > self.dirt_properties.max_global_amount:
|
|
free_for_dirt = self._tiles.empty_tiles
|
|
|
|
# randomly distribute dirt across the grid
|
|
new_spawn = self._dirt_rng.uniform(0, self.dirt_properties.max_spawn_ratio)
|
|
n_dirt_tiles = max(0, int(new_spawn * len(free_for_dirt)))
|
|
for tile in free_for_dirt[:n_dirt_tiles]:
|
|
new_value = dirt_slice[tile.pos] + self.dirt_properties.gain_amount
|
|
dirt_slice[tile.pos] = min(new_value, self.dirt_properties.max_local_amount)
|
|
else:
|
|
pass
|
|
|
|
def clean_up(self, agent: Agent) -> bool:
|
|
dirt_slice = self._slices.by_name(DIRT).slice
|
|
if old_dirt_amount := dirt_slice[agent.pos]:
|
|
new_dirt_amount = old_dirt_amount - self.dirt_properties.clean_amount
|
|
dirt_slice[agent.pos] = max(new_dirt_amount, c.FREE_CELL.value)
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def do_additional_step(self) -> dict:
|
|
if smear_amount := self.dirt_properties.dirt_smear_amount:
|
|
dirt_slice = self._slices.by_name(DIRT).slice
|
|
for agent in self._agents:
|
|
if agent.temp_valid and agent.last_pos != h.NO_POS:
|
|
if dirt := dirt_slice[agent.last_pos]:
|
|
if smeared_dirt := round(dirt * smear_amount, 2):
|
|
dirt_slice[agent.last_pos] = max(0, dirt_slice[agent.last_pos]-smeared_dirt)
|
|
dirt_slice[agent.pos] = min((self.dirt_properties.max_local_amount,
|
|
dirt_slice[agent.pos] + smeared_dirt)
|
|
)
|
|
|
|
if not self._next_dirt_spawn:
|
|
self.spawn_dirt()
|
|
self._next_dirt_spawn = self.dirt_properties.spawn_frequency
|
|
else:
|
|
self._next_dirt_spawn -= 1
|
|
return {}
|
|
|
|
def do_additional_actions(self, agent: Agent, action: int) -> bool:
|
|
if self._is_clean_up_action(action):
|
|
valid = self.clean_up(agent)
|
|
return valid
|
|
else:
|
|
return c.NOT_VALID.value
|
|
|
|
def do_additional_reset(self) -> None:
|
|
self.spawn_dirt()
|
|
self._next_dirt_spawn = self.dirt_properties.spawn_frequency
|
|
|
|
def calculate_reward(self) -> (int, dict):
|
|
info_dict = dict()
|
|
|
|
dirt_slice = self._slices.by_name(DIRT).slice
|
|
dirty_tiles = [dirt_slice[tile.pos] for tile in self._tiles if dirt_slice[tile.pos]]
|
|
current_dirt_amount = sum(dirty_tiles)
|
|
dirty_tile_count = len(dirty_tiles)
|
|
if dirty_tile_count:
|
|
dirt_distribution_score = entropy(softmax(dirt_slice)) / dirty_tile_count
|
|
else:
|
|
dirt_distribution_score = 0
|
|
|
|
info_dict.update(dirt_amount=current_dirt_amount)
|
|
info_dict.update(dirty_tile_count=dirty_tile_count)
|
|
info_dict.update(dirt_distribution_score=dirt_distribution_score)
|
|
|
|
try:
|
|
# penalty = current_dirt_amount
|
|
reward = 0
|
|
except (ZeroDivisionError, RuntimeWarning):
|
|
reward = 0
|
|
|
|
for agent in self._agents:
|
|
if agent.temp_collisions:
|
|
self.print(f't = {self._steps}\t{agent.name} has collisions with {agent.temp_collisions}')
|
|
|
|
if self._is_clean_up_action(agent.temp_action):
|
|
if agent.temp_valid:
|
|
reward += 0.5
|
|
self.print(f'{agent.name} did just clean up some dirt at {agent.pos}.')
|
|
info_dict.update(dirt_cleaned=1)
|
|
else:
|
|
reward -= 0.01
|
|
self.print(f'{agent.name} just tried to clean up some dirt at {agent.pos}, but failed.')
|
|
info_dict.update({f'{agent.name}_failed_action': 1})
|
|
info_dict.update({f'{agent.name}_failed_action': 1})
|
|
info_dict.update({f'{agent.name}_failed_dirt_cleanup': 1})
|
|
|
|
elif self._actions.is_moving_action(agent.temp_action):
|
|
if agent.temp_valid:
|
|
# info_dict.update(movement=1)
|
|
reward -= 0.00
|
|
else:
|
|
# self.print('collision')
|
|
reward -= 0.01
|
|
self.print(f'{agent.name} just hit the wall at {agent.pos}.')
|
|
info_dict.update({f'{agent.name}_vs_LEVEL': 1})
|
|
|
|
elif self._actions.is_door_usage(agent.temp_action):
|
|
if agent.temp_valid:
|
|
self.print(f'{agent.name} did just use the door at {agent.pos}.')
|
|
info_dict.update(door_used=1)
|
|
else:
|
|
reward -= 0.01
|
|
self.print(f'{agent.name} just tried to use a door at {agent.pos}, but failed.')
|
|
info_dict.update({f'{agent.name}_failed_action': 1})
|
|
info_dict.update({f'{agent.name}_failed_door_open': 1})
|
|
|
|
else:
|
|
info_dict.update(no_op=1)
|
|
reward -= 0.00
|
|
|
|
for other_agent in agent.temp_collisions:
|
|
info_dict.update({f'{agent.name}_vs_{other_agent.name}': 1})
|
|
|
|
self.print(f"reward is {reward}")
|
|
# Potential based rewards ->
|
|
# track the last reward , minus the current reward = potential
|
|
return reward, info_dict
|
|
|
|
|
|
if __name__ == '__main__':
|
|
render = True
|
|
|
|
dirt_props = DirtProperties(1, 0.05, 0.1, 3, 1, 20, 0.0)
|
|
move_props = MovementProperties(True, True, False)
|
|
|
|
factory = SimpleFactory(n_agents=1, done_at_collision=False, frames_to_stack=0,
|
|
level_name='rooms', max_steps=400,
|
|
omit_agent_slice_in_obs=True, parse_doors=True, pomdp_r=3,
|
|
record_episodes=False, verbose=False
|
|
)
|
|
|
|
n_actions = factory.action_space.n - 1
|
|
_ = factory.observation_space
|
|
|
|
for epoch in range(100):
|
|
random_actions = [[random.randint(0, n_actions) for _ in range(factory.n_agents)] for _ in range(200)]
|
|
env_state = factory.reset()
|
|
r = 0
|
|
for agent_i_action in random_actions:
|
|
env_state, step_r, done_bool, info_obj = factory.step(agent_i_action)
|
|
r += step_r
|
|
if render:
|
|
factory.render()
|
|
if done_bool:
|
|
break
|
|
print(f'Factory run {epoch} done, reward is:\n {r}')
|