2021-06-02 13:36:20 +02:00

90 lines
3.4 KiB
Python

import pickle
from pathlib import Path
from stable_baselines3.common.callbacks import BaseCallback
from environments.helpers import IGNORED_DF_COLUMNS
from environments.logging.plotting import prepare_plot
import pandas as pd
class MonitorCallback(BaseCallback):
ext = 'png'
def __init__(self, env, filepath=Path('debug_out/monitor.pick'), plotting=True):
super(MonitorCallback, self).__init__()
self.filepath = Path(filepath)
self._monitor_df = pd.DataFrame()
self._monitor_dict = dict()
self.env = env
self.plotting = plotting
self.started = False
self.closed = False
def __enter__(self):
self._on_training_start()
def __exit__(self, exc_type, exc_val, exc_tb):
self._on_training_end()
def _on_training_start(self) -> None:
if self.started:
pass
else:
self.filepath.parent.mkdir(exist_ok=True, parents=True)
self.started = True
pass
def _on_training_end(self) -> None:
if self.closed:
pass
else:
# self.out_file.unlink(missing_ok=True)
with self.filepath.open('wb') as f:
pickle.dump(self._monitor_df.reset_index(), f, protocol=pickle.HIGHEST_PROTOCOL)
if self.plotting:
print('Monitor files were dumped to disk, now plotting....')
# %% Load MonitorList from Disk
with self.filepath.open('rb') as f:
monitor_list = pickle.load(f)
df = None
for m_idx, monitor in enumerate(monitor_list):
monitor['episode'] = m_idx
if df is None:
df = pd.DataFrame(columns=monitor.columns)
for _, row in monitor.iterrows():
df.loc[df.shape[0]] = row
if df is None: # The env exited premature, we catch it.
self.closed = True
return
for column in list(df.columns):
if column != 'episode':
df[f'{column}_roll'] = df[column].rolling(window=50).mean()
# result.tail()
prepare_plot(filepath=self.filepath, results_df=df.filter(regex=(".+_roll")))
print('Plotting done.')
self.closed = True
def _on_step(self) -> bool:
for _, info in enumerate(self.locals.get('infos', [])):
self._monitor_dict[self.num_timesteps] = {key: val for key, val in info.items()
if key not in ['terminal_observation', 'episode']}
for env_idx, done in list(enumerate(self.locals.get('dones', []))) + \
list(enumerate(self.locals.get('done', []))):
if done:
env_monitor_df = pd.DataFrame.from_dict(self._monitor_dict, orient='index')
self._monitor_dict = dict()
columns = [col for col in env_monitor_df.columns if col not in IGNORED_DF_COLUMNS]
env_monitor_df = env_monitor_df.aggregate(
{col: 'mean' if col.endswith('ount') else 'sum' for col in columns}
)
env_monitor_df['episode'] = len(self._monitor_df)
self._monitor_df = self._monitor_df.append([env_monitor_df])
else:
pass
return True