import pickle import warnings from typing import Union from os import PathLike from pathlib import Path import time import pandas as pd from stable_baselines3.common.callbacks import CallbackList from environments.factory.simple_factory import DirtProperties, SimpleFactory from environments.helpers import IGNORED_DF_COLUMNS from environments.logging.monitor import MonitorCallback from environments.logging.plotting import prepare_plot from environments.logging.training import TraningMonitor warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=UserWarning) def combine_runs(run_path: Union[str, PathLike]): run_path = Path(run_path) df_list = list() for run, monitor_file in enumerate(run_path.rglob('monitor_*.pick')): with monitor_file.open('rb') as f: monitor_df = pickle.load(f) monitor_df['run'] = run monitor_df = monitor_df.fillna(0) df_list.append(monitor_df) df = pd.concat(df_list, ignore_index=True) df = df.fillna(0).rename(columns={'episode': 'Episode', 'run': 'Run'}) columns = [col for col in df.columns if col not in IGNORED_DF_COLUMNS] non_overlapp_window = df.groupby(['Run', df['Episode'] // 20]).mean() df_melted = non_overlapp_window[columns].reset_index().melt(id_vars=['Episode', 'Run'], value_vars=columns, var_name="Measurement", value_name="Score") prepare_plot(run_path / f'{run_path.name}_monitor_lineplot.png', df_melted) print('Plotting done.') if __name__ == '__main__': from stable_baselines3 import PPO, DQN, A2C dirt_props = DirtProperties() time_stamp = int(time.time()) out_path = None for modeL_type in [A2C, PPO, DQN]: for seed in range(5): env = SimpleFactory(n_agents=1, dirt_properties=dirt_props, pomdp_radius=2, max_steps=400, allow_diagonal_movement=False, allow_no_op=False, verbose=True) model = modeL_type("MlpPolicy", env, verbose=1, seed=seed, device='cpu') out_path = Path('debug_out') / f'{model.__class__.__name__}_{time_stamp}' identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}' out_path /= identifier callbacks = CallbackList( [TraningMonitor(out_path / f'train_logging_{identifier}.csv'), MonitorCallback(env, filepath=out_path / f'monitor_{identifier}.pick', plotting=False)] ) model.learn(total_timesteps=int(2e5), callback=callbacks) save_path = out_path / f'model_{identifier}.zip' save_path.parent.mkdir(parents=True, exist_ok=True) model.save(save_path) env.save_params(out_path.parent / f'env_{model.__class__.__name__}_{time_stamp}.pick') if out_path: combine_runs(out_path.parent)