from collections import defaultdict from enum import Enum, auto from typing import Tuple, Union import numpy as np from pathlib import Path # Constants class Constants(Enum): WALL = '#' DOOR = 'D' DANGER_ZONE = 'x' LEVEL = 'level' AGENT = 'Agent' FREE_CELL = 0 OCCUPIED_CELL = 1 DOORS = 'doors' CLOSED_DOOR = 1 OPEN_DOOR = -1 LEVEL_IDX = 0 ACTION = auto() COLLISIONS = auto() VALID = True NOT_VALID = False def __bool__(self): return bool(self.value) LEVELS_DIR = 'levels' TO_BE_AVERAGED = ['dirt_amount', 'dirty_tiles'] IGNORED_DF_COLUMNS = ['Episode', 'Run', 'train_step', 'step', 'index', 'dirt_amount', 'dirty_tile_count', 'terminal_observation', 'episode'] MANHATTAN_MOVES = ['north', 'east', 'south', 'west'] DIAGONAL_MOVES = ['north_east', 'south_east', 'south_west', 'north_west'] NO_POS = (-9999, -9999) ACTIONMAP = defaultdict(lambda: (0, 0), dict(north=(-1, 0), east=(0, 1), south=(1, 0), west=(0, -1), north_east=(-1, +1), south_east=(1, 1), south_west=(+1, -1), north_west=(-1, -1) ) ) HORIZONTAL_DOOR_MAP = np.asarray([[0, 0, 0], [1, 0, 1], [0, 0, 0]]) VERTICAL_DOOR_MAP = np.asarray([[0, 1, 0], [0, 0, 0], [0, 1, 0]]) HORIZONTAL_DOOR_ZONE_1 = np.asarray([[1, 1, 1], [0, 0, 0], [0, 0, 0]]) HORIZONTAL_DOOR_ZONE_2 = np.asarray([[0, 0, 0], [0, 0, 0], [1, 1, 1]]) VERTICAL_DOOR_ZONE_1 = np.asarray([[1, 0, 0], [0, 0, 0], [0, 0, 1]]) VERTICAL_DOOR_ZONE_2 = np.asarray([[1, 0, 0], [0, 0, 0], [0, 0, 1]]) # Utility functions def parse_level(path): with path.open('r') as lvl: level = list(map(lambda x: list(x.strip()), lvl.readlines())) if len(set([len(line) for line in level])) > 1: raise AssertionError('Every row of the level string must be of equal length.') return level def one_hot_level(level, wall_char: Union[Constants, str] = Constants.WALL): grid = np.array(level) binary_grid = np.zeros(grid.shape, dtype=np.int8) if wall_char in Constants: binary_grid[grid == wall_char.value] = Constants.OCCUPIED_CELL.value else: binary_grid[grid == wall_char] = Constants.OCCUPIED_CELL.value return binary_grid def check_position(slice_to_check_against: np.ndarray, position_to_check: Tuple[int, int]): x_pos, y_pos = position_to_check # Check if agent colides with grid boundrys valid = not ( x_pos < 0 or y_pos < 0 or x_pos >= slice_to_check_against.shape[0] or y_pos >= slice_to_check_against.shape[0] ) # Check for collision with level walls valid = valid and not slice_to_check_against[x_pos, y_pos] return Constants.VALID if valid else Constants.NOT_VALID if __name__ == '__main__': parsed_level = parse_level(Path(__file__).parent / 'factory' / 'levels' / 'simple.txt') y = one_hot_level(parsed_level) print(np.argwhere(y == 0))