from collections import defaultdict, OrderedDict from typing import List import numpy as np from attr import dataclass from environments.factory.base_factory import BaseFactory, AgentState from environments import helpers as h from environments.factory.renderer import Renderer DIRT_INDEX = -1 @dataclass class DirtProperties: clean_amount = 0.25 max_spawn_ratio = 0.1 gain_amount = 0.1 class GettingDirty(BaseFactory): def _is_clean_up_action(self, action): return self.movement_actions + 1 - 1 == action def __init__(self, *args, dirt_properties: DirtProperties, **kwargs): self._dirt_properties = dirt_properties super(GettingDirty, self).__init__(*args, **kwargs) self.slice_strings.update({self.state.shape[0]-1: 'dirt'}) self.renderer = None # expensive - dont use it when not required ! def render(self): if not self.renderer: # lazy init h, w = self.state.shape[1:] self.renderer = Renderer(w, h, view_radius=0) self.renderer.render( # todo: nur fuers prinzip, ist hardgecoded Dreck aktuell OrderedDict(wall=np.argwhere(self.state[0] > 0), # Ordered dict defines the drawing order! important dirt=np.argwhere(self.state[DIRT_INDEX] > 0), agent=np.argwhere(self.state[1] > 0) ) ) def spawn_dirt(self) -> None: free_for_dirt = self.free_cells(excluded_slices=DIRT_INDEX) # randomly distribute dirt across the grid n_dirt_tiles = int(random.uniform(0, self._dirt_properties.max_spawn_ratio) * len(free_for_dirt)) for x, y in free_for_dirt[:n_dirt_tiles]: self.state[DIRT_INDEX, x, y] += self._dirt_properties.gain_amount def clean_up(self, pos: (int, int)) -> ((int, int), bool): new_dirt_amount = self.state[DIRT_INDEX][pos] - self._dirt_properties.clean_amount cleanup_was_sucessfull: bool if self.state[DIRT_INDEX][pos] == h.IS_FREE_CELL: cleanup_was_sucessfull = False return pos, cleanup_was_sucessfull else: cleanup_was_sucessfull = True self.state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL) return pos, cleanup_was_sucessfull def step(self, actions): _, _, _, info = super(GettingDirty, self).step(actions) self.spawn_dirt() return self.state, self.cumulative_reward, self.done, info def additional_actions(self, agent_i: int, action: int) -> ((int, int), bool): if action != self._is_moving_action(action): if self._is_clean_up_action(action): agent_i_pos = self.agent_i_position(agent_i) _, valid = self.clean_up(agent_i_pos) if valid: print(f'Agent {agent_i} did just clean up some dirt at {agent_i_pos}.') self.monitor.add('dirt_cleaned', self._dirt_properties.clean_amount) else: print(f'Agent {agent_i} just tried to clean up some dirt at {agent_i_pos}, but was unsucsessfull.') self.monitor.add('failed_cleanup_attempt', 1) return agent_i_pos, valid else: raise RuntimeError('This should not happen!!!') else: raise RuntimeError('This should not happen!!!') def reset(self) -> (np.ndarray, int, bool, dict): state, r, done, _ = super().reset() # state, reward, done, info ... = dirt_slice = np.zeros((1, *self.state.shape[1:])) self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice self.spawn_dirt() return self.state, r, self.done, {} def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict): this_step_reward = 0 for agent_state in agent_states: collisions = agent_state.collisions print(f't = {self.steps}\tAgent {agent_state.i} has collisions with ' f'{[self.slice_strings[entity] for entity in collisions if entity != self.string_slices["dirt"]]}') if self._is_clean_up_action(agent_state.action) and agent_state.action_valid: this_step_reward += 1 for entity in collisions: if entity != self.string_slices["dirt"]: self.monitor.add(f'agent_{agent_state.i}_vs_{self.slice_strings[entity]}', 1) self.monitor.set('dirt_amount', self.state[DIRT_INDEX].sum()) self.monitor.set('dirty_tiles', len(np.nonzero(self.state[DIRT_INDEX]))) return this_step_reward, {} if __name__ == '__main__': import random render = True dirt_props = DirtProperties() factory = GettingDirty(n_agents=1, dirt_properties=dirt_props) monitor_list = list() for epoch in range(100): random_actions = [random.randint(0, 8) for _ in range(200)] state, r, done, _ = factory.reset() for action in random_actions: state, r, done, info = factory.step(action) if render: factory.render() monitor_list.append(factory.monitor.to_pd_dataframe()) print(f'Factory run {epoch} done, reward is:\n {r}') from pathlib import Path import pickle out_path = Path('debug_out') out_path.mkdir(exist_ok=True, parents=True) with (out_path / 'monitor.pick').open('wb') as f: pickle.dump(monitor_list, f, protocol=pickle.HIGHEST_PROTOCOL)