import random from typing import Tuple, List, Union, Iterable import numpy as np from pathlib import Path from environments import helpers as h class BaseFactory: def __init__(self, level='simple', n_agents=1, max_steps=1e3): self.n_agents = n_agents self.max_steps = max_steps self.allow_vertical_movement = True self.allow_horizontal_movement = True self.level = h.one_hot_level( h.parse_level(Path(__file__).parent / h.LEVELS_DIR / f'{level}.txt') ) self.slice_strings = {0: 'level', **{i: f'agent#{i}' for i in range(1, self.n_agents+1)}} self.reset() def reset(self): self.done = False self.steps = 0 # Agent placement ... agents = np.zeros((self.n_agents, *self.level.shape), dtype=np.int8) floor_tiles = np.argwhere(self.level == h.IS_FREE_CELL) # ... on random positions np.random.shuffle(floor_tiles) for i, (x, y) in enumerate(floor_tiles[:self.n_agents]): agents[i, x, y] = h.IS_OCCUPIED_CELL # state.shape = level, agent 1,..., agent n, self.state = np.concatenate((np.expand_dims(self.level, axis=0), agents), axis=0) # Returns State, Reward, Done, Info return self.state, 0, self.done, {} def additional_actions(self, agent_i, action) -> ((int, int), bool): raise NotImplementedError def step(self, actions): actions = [actions] if isinstance(actions, int) else actions assert isinstance(actions, list), f'"actions has to be in [{int, list}]' self.steps += 1 # FixMe: Why do we need this? r = 0 # Move this in a seperate function? actions = list(enumerate(actions)) random.shuffle(actions) for agent_i, action in actions: if self._is_moving_action(action): pos, valid = self.move_or_colide(agent_i, action) else: pos, valid = self.additional_actions(agent_i, action) actions[agent_i] = (agent_i, action, pos, valid) collision_vecs = self.check_all_collisions(actions, self.state.shape[0]) reward, info = self.calculate_reward(collision_vecs, [a[1] for a in actions], r) r += reward if self.steps >= self.max_steps: self.done = True return self.state, r, self.done, info def check_collisions(self, agent_i, pos, valid): pos_x, pos_y = pos collisions_vec = self.state[:, pos_x, pos_y].copy() # "vertical fiber" at position of agent i collisions_vec[h.AGENT_START_IDX + agent_i] = h.IS_FREE_CELL # no self-collisions if valid: # ToDo: Place a function hook here pass else: collisions_vec[h.LEVEL_IDX] = h.IS_OCCUPIED_CELL return collisions_vec def do_move(self, agent_i: int, old_pos: (int, int), new_pos: (int, int)) -> None: (x, y), (x_new, y_new) = old_pos, new_pos self.state[agent_i + h.AGENT_START_IDX, x, y] = h.IS_FREE_CELL self.state[agent_i + h.AGENT_START_IDX, x_new, y_new] = h.IS_OCCUPIED_CELL def move_or_colide(self, agent_i: int, action: int) -> ((int, int), bool): old_pos, new_pos, valid = h.check_agent_move(state=self.state, dim=agent_i + h.AGENT_START_IDX, action=action) if valid: # Does not collide width level boundaries self.do_move(agent_i, old_pos, new_pos) return new_pos, valid return old_pos, valid @property def free_cells(self) -> np.ndarray: free_cells = self.state.sum(0) free_cells = np.argwhere(free_cells == h.IS_FREE_CELL) np.random.shuffle(free_cells) return free_cells def calculate_reward(self, collisions_vec: np.ndarray, actions: Iterable[int], r: int) -> (int, dict): # Returns: Reward, Info # Set to "raise NotImplementedError" return 0, {}