mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 04:37:25 +01:00 
			
		
		
		
	firs commit for our new MARL algorithms library, contains working implementations of IAC, SNAC and SEAC
This commit is contained in:
		
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -702,3 +702,4 @@ $RECYCLE.BIN/ | ||||
|  | ||||
| # End of https://www.toptal.com/developers/gitignore/api/linux,unity,macos,python,windows,pycharm,notepadpp,visualstudiocode,latex | ||||
| /studies/e_1/ | ||||
| /studies/curious_study/ | ||||
|   | ||||
| @@ -1,221 +0,0 @@ | ||||
| from typing import NamedTuple, Union | ||||
| from collections import deque, OrderedDict, defaultdict | ||||
| import numpy as np | ||||
| import random | ||||
|  | ||||
| import pandas as pd | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| from tqdm import trange | ||||
|  | ||||
| class Experience(NamedTuple): | ||||
|     # can be use for a single (s_t, a, r s_{t+1}) tuple | ||||
|     # or for a batch of tuples | ||||
|     observation:      np.ndarray | ||||
|     next_observation: np.ndarray | ||||
|     action:           np.ndarray | ||||
|     reward:           Union[float, np.ndarray] | ||||
|     done  :           Union[bool, np.ndarray] | ||||
|     episode:          int = -1 | ||||
|  | ||||
|  | ||||
| class BaseLearner: | ||||
|     def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1, stack_n_frames=1): | ||||
|         assert train_every[0] in ['step', 'episode'], 'train_every[0] must be one of ["step", "episode"]' | ||||
|         self.env = env | ||||
|         self.n_agents = n_agents | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.train_every = train_every | ||||
|         self.stack_n_frames = deque(maxlen=stack_n_frames) | ||||
|         self.device = 'cpu' | ||||
|         self.n_updates = 0 | ||||
|         self.step = 0 | ||||
|         self.episode_step = 0 | ||||
|         self.episode = 0 | ||||
|         self.running_reward = deque(maxlen=5) | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
|         for attr, value in self.__dict__.items(): | ||||
|             if isinstance(value, nn.Module): | ||||
|                 value = value.to(self.device) | ||||
|         return self | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         pass | ||||
|  | ||||
|     def on_new_experience(self, experience): | ||||
|         pass | ||||
|  | ||||
|     def on_step_end(self, n_steps): | ||||
|         pass | ||||
|  | ||||
|     def on_episode_end(self, n_steps): | ||||
|         pass | ||||
|  | ||||
|     def on_all_done(self): | ||||
|         pass | ||||
|  | ||||
|     def train(self): | ||||
|         pass | ||||
|  | ||||
|     def reward(self, r): | ||||
|         return r | ||||
|  | ||||
|     def learn(self, n_steps): | ||||
|         train_type, train_freq = self.train_every | ||||
|         while self.step < n_steps: | ||||
|             obs, done = self.env.reset(), False | ||||
|             total_reward = 0 | ||||
|             self.episode_step = 0 | ||||
|             while not done: | ||||
|  | ||||
|                 action = self.get_action(obs) | ||||
|  | ||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||
|  | ||||
|                 experience = Experience(observation=obs, next_observation=next_obs, | ||||
|                                         action=action, reward=self.reward(reward), | ||||
|                                         done=done, episode=self.episode)  # do we really need to copy? | ||||
|                 self.on_new_experience(experience) | ||||
|                 # end of step routine | ||||
|                 obs = next_obs | ||||
|                 total_reward += reward | ||||
|                 self.step += 1 | ||||
|                 self.episode_step += 1 | ||||
|                 self.on_step_end(n_steps) | ||||
|                 if train_type == 'step' and (self.step % train_freq == 0): | ||||
|                     self.train() | ||||
|                     self.n_updates += 1 | ||||
|             self.on_episode_end(n_steps) | ||||
|             if train_type == 'episode' and (self.episode % train_freq == 0): | ||||
|                 self.train() | ||||
|                 self.n_updates += 1 | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             self.episode += 1 | ||||
|             try: | ||||
|                 if self.step % 100 == 0: | ||||
|                     print( | ||||
|                         f'Step: {self.step} ({(self.step / n_steps) * 100:.2f}%)\tRunning reward: {sum(list(self.running_reward)) / len(self.running_reward):.2f}\t' | ||||
|                         f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss)) / len(self.running_loss):.4f}\tUpdates:{self.n_updates}') | ||||
|             except Exception as e: | ||||
|                 pass | ||||
|         self.on_all_done() | ||||
|  | ||||
|     def evaluate(self, n_episodes=100, render=False): | ||||
|         with torch.no_grad(): | ||||
|             data = [] | ||||
|             for eval_i in trange(n_episodes): | ||||
|                 obs, done = self.env.reset(), False | ||||
|                 while not done: | ||||
|                     action = self.get_action(obs) | ||||
|                     next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||
|                     if render: self.env.render() | ||||
|                     obs = next_obs  # srsly i'm so stupid | ||||
|                     info.update({'reward': reward, 'eval_episode': eval_i}) | ||||
|                     data.append(info) | ||||
|         return pd.DataFrame(data).fillna(0) | ||||
|  | ||||
|  | ||||
|  | ||||
| class BaseBuffer: | ||||
|     def __init__(self, size: int): | ||||
|         self.size = size | ||||
|         self.experience = deque(maxlen=size) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.experience) | ||||
|  | ||||
|     def add(self, exp: Experience): | ||||
|         self.experience.append(exp) | ||||
|  | ||||
|     def sample(self, k, cer=4): | ||||
|         sample = random.choices(self.experience, k=k-cer) | ||||
|         for i in range(cer): sample += [self.experience[-i]] | ||||
|         observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float() | ||||
|         next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float() | ||||
|         actions = torch.tensor([e.action for e in sample]).long() | ||||
|         rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1) | ||||
|         dones = torch.tensor([e.done for e in sample]).float().view(-1, 1) | ||||
|         #print(observations.shape, next_observations.shape, actions.shape, rewards.shape, dones.shape) | ||||
|         return Experience(observations, next_observations, actions, rewards, dones) | ||||
|  | ||||
|  | ||||
| class TrajectoryBuffer(BaseBuffer): | ||||
|     def __init__(self, size): | ||||
|         super(TrajectoryBuffer, self).__init__(size) | ||||
|         self.experience = defaultdict(list) | ||||
|  | ||||
|     def add(self, exp: Experience): | ||||
|         self.experience[exp.episode].append(exp) | ||||
|         if len(self.experience) > self.size: | ||||
|             oldest_traj_key = list(sorted(self.experience.keys()))[0] | ||||
|             del self.experience[oldest_traj_key] | ||||
|  | ||||
|  | ||||
| def soft_update(local_model, target_model, tau): | ||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||
|         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) | ||||
|  | ||||
|  | ||||
| def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'): | ||||
|     activations = {'elu': nn.ELU, 'relu': nn.ReLU, 'sigmoid': nn.Sigmoid, | ||||
|                   'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh, | ||||
|                   'gelu': nn.GELU, 'identity': nn.Identity} | ||||
|     layers = [('Flatten', nn.Flatten())] if flatten else [] | ||||
|     for i in range(1, len(dims)): | ||||
|         layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i]))) | ||||
|         activation_str = activation if i != len(dims)-1 else activation_last | ||||
|         layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]())) | ||||
|     return nn.Sequential(OrderedDict(layers)) | ||||
|  | ||||
|  | ||||
| class BaseDQN(nn.Module): | ||||
|     def __init__(self, dims=[3*5*5, 64, 64, 9]): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = mlp_maker(dims, flatten=True) | ||||
|  | ||||
|     @torch.no_grad() | ||||
|     def act(self, x) -> np.ndarray: | ||||
|         action = self.forward(x).max(-1)[1].numpy() | ||||
|         return action | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.net(x) | ||||
|  | ||||
|  | ||||
| class BaseDDQN(BaseDQN): | ||||
|     def __init__(self, | ||||
|                  backbone_dims=[3*5*5, 64, 64], | ||||
|                  value_dims=[64, 1], | ||||
|                  advantage_dims=[64, 9], | ||||
|                  activation='elu'): | ||||
|         super(BaseDDQN, self).__init__(backbone_dims) | ||||
|         self.net = mlp_maker(backbone_dims, activation=activation, flatten=True) | ||||
|         self.value_head         =  mlp_maker(value_dims) | ||||
|         self.advantage_head     =  mlp_maker(advantage_dims) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         features = self.net(x) | ||||
|         advantages = self.advantage_head(features) | ||||
|         values = self.value_head(features) | ||||
|         return values + (advantages - advantages.mean()) | ||||
|  | ||||
|  | ||||
| class BaseICM(nn.Module): | ||||
|     def __init__(self, backbone_dims=[2*3*5*5, 64, 64], head_dims=[2*64, 64, 9]): | ||||
|         super(BaseICM, self).__init__() | ||||
|         self.backbone = mlp_maker(backbone_dims, flatten=True, activation_last='relu', activation='relu') | ||||
|         self.icm = mlp_maker(head_dims) | ||||
|         self.ce = nn.CrossEntropyLoss() | ||||
|  | ||||
|     def forward(self, s0, s1, a): | ||||
|         phi_s0 = self.backbone(s0) | ||||
|         phi_s1 = self.backbone(s1) | ||||
|         cat = torch.cat((phi_s0, phi_s1), dim=1) | ||||
|         a_prime = torch.softmax(self.icm(cat), dim=-1) | ||||
|         ce = self.ce(a_prime, a) | ||||
|         return dict(prediction=a_prime, loss=ce) | ||||
| @@ -1,77 +0,0 @@ | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
| from algorithms.q_learner import QLearner | ||||
|  | ||||
|  | ||||
| class MQLearner(QLearner): | ||||
|     # Munchhausen Q-Learning | ||||
|     def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs): | ||||
|         super(MQLearner, self).__init__(*args, **kwargs) | ||||
|         assert self.n_agents == 1, 'M-DQN currently only supports single agent training' | ||||
|         self.temperature = temperature | ||||
|         self.alpha = alpha | ||||
|         self.clip0 = clip_l0 | ||||
|  | ||||
|     def tau_ln_pi(self, qs): | ||||
|         # computes log(softmax(qs/temperature)) | ||||
|         # Custom log-sum-exp trick from page 18 to compute the log-policy terms | ||||
|         v_k = qs.max(-1)[0].unsqueeze(-1) | ||||
|         advantage = qs - v_k | ||||
|         logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1) | ||||
|         tau_ln_pi = advantage - self.temperature * logsum | ||||
|         return tau_ln_pi | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1]) | ||||
|  | ||||
|             with torch.no_grad(): | ||||
|                 q_target_next = self.target_q_net(experience.next_observation) | ||||
|                 tau_log_pi_next = self.tau_ln_pi(q_target_next) | ||||
|  | ||||
|                 q_k_targets = self.target_q_net(experience.observation) | ||||
|                 log_pi = self.tau_ln_pi(q_k_targets) | ||||
|  | ||||
|                 pi_target = F.softmax(q_target_next / self.temperature, dim=-1) | ||||
|                 q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1) | ||||
|  | ||||
|                 munchausen_addon = log_pi.gather(-1, experience.action) | ||||
|  | ||||
|                 munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0)) | ||||
|  | ||||
|                 # Compute Q targets for current states | ||||
|                 m_q_target = munchausen_reward + q_target | ||||
|  | ||||
|             # Get expected Q values from local model | ||||
|             q_k = self.q_net(experience.observation) | ||||
|             pred_q = q_k.gather(-1, experience.action) | ||||
|  | ||||
|             # Compute loss | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2)) | ||||
|             self._backprop_loss(loss) | ||||
|  | ||||
| from tqdm import trange | ||||
| from collections import deque | ||||
| class MQICMLearner(MQLearner): | ||||
|     def __init__(self, *args, icm, **kwargs): | ||||
|         super(MQICMLearner, self).__init__(*args, **kwargs) | ||||
|         self.icm = icm | ||||
|         self.icm_optimizer = torch.optim.AdamW(self.icm.parameters()) | ||||
|         self.normalize_reward = deque(maxlen=1000) | ||||
|  | ||||
|     def on_all_done(self): | ||||
|         from collections import deque | ||||
|         losses = deque(maxlen=100) | ||||
|         for b in trange(10000): | ||||
|             batch = self.buffer.sample(128, 0) | ||||
|             s0, s1, a = batch.observation,  batch.next_observation, batch.action | ||||
|             loss = self.icm(s0, s1, a.squeeze())['loss'] | ||||
|             self.icm_optimizer.zero_grad() | ||||
|             loss.backward() | ||||
|             self.icm_optimizer.step() | ||||
|             losses.append(loss.item()) | ||||
|             if b%100 == 0: | ||||
|                 print(np.mean(losses)) | ||||
							
								
								
									
										4
									
								
								algorithms/marl/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								algorithms/marl/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | ||||
| from algorithms.marl.base_ac import BaseActorCritic | ||||
| from algorithms.marl.iac import LoopIAC | ||||
| from algorithms.marl.snac import LoopSNAC | ||||
| from algorithms.marl.seac import LoopSEAC | ||||
							
								
								
									
										176
									
								
								algorithms/marl/base_ac.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								algorithms/marl/base_ac.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,176 @@ | ||||
| import torch | ||||
| from typing import Union, List | ||||
| import numpy as np | ||||
| from torch.distributions import Categorical | ||||
| from algorithms.marl.memory import MARLActorCriticMemory | ||||
| from algorithms.utils import add_env_props, instantiate_class | ||||
| from pathlib import Path | ||||
| import pandas as pd | ||||
| from collections import deque | ||||
| ListOrTensor = Union[List, torch.Tensor] | ||||
|  | ||||
|  | ||||
| class BaseActorCritic: | ||||
|     def __init__(self, cfg): | ||||
|         add_env_props(cfg) | ||||
|         self.__training = True | ||||
|         self.cfg = cfg | ||||
|         self.n_agents = cfg['env']['n_agents'] | ||||
|         self.setup() | ||||
|  | ||||
|     def setup(self): | ||||
|         self.net = instantiate_class(self.cfg['agent']) | ||||
|         self.optimizer = torch.optim.RMSprop(self.net.parameters(), lr=3e-4, eps=1e-5) | ||||
|  | ||||
|     @classmethod | ||||
|     def _as_torch(cls, x): | ||||
|         if isinstance(x, np.ndarray): | ||||
|             return torch.from_numpy(x) | ||||
|         elif isinstance(x, List): | ||||
|             return torch.tensor(x) | ||||
|         elif isinstance(x, (int, float)): | ||||
|             return torch.tensor([x]) | ||||
|         return x | ||||
|  | ||||
|     def train(self): | ||||
|         self.__training = False | ||||
|         networks = [self.net] if not isinstance(self.net, List) else self.net | ||||
|         for net in networks: | ||||
|             net.train() | ||||
|  | ||||
|     def eval(self): | ||||
|         self.__training = False | ||||
|         networks = [self.net] if not isinstance(self.net, List) else self.net | ||||
|         for net in networks: | ||||
|             net.eval() | ||||
|  | ||||
|     def load_state_dict(self, path: Path): | ||||
|         pass | ||||
|  | ||||
|     def get_actions(self, out) -> ListOrTensor: | ||||
|         actions = [Categorical(logits=logits).sample().item() for logits in out['logits']] | ||||
|         return actions | ||||
|  | ||||
|     def init_hidden(self) -> dict[ListOrTensor]: | ||||
|         pass | ||||
|  | ||||
|     def forward(self, | ||||
|                 observations:  ListOrTensor, | ||||
|                 actions:       ListOrTensor, | ||||
|                 hidden_actor:  ListOrTensor, | ||||
|                 hidden_critic: ListOrTensor | ||||
|                 ): | ||||
|         pass | ||||
|  | ||||
|  | ||||
|     @torch.no_grad() | ||||
|     def train_loop(self, checkpointer=None): | ||||
|         env = instantiate_class(self.cfg['env']) | ||||
|         n_steps, max_steps = [self.cfg['algorithm'][k] for k in ['n_steps', 'max_steps']] | ||||
|         global_steps = 0 | ||||
|         reward_queue = deque(maxlen=2000) | ||||
|         while global_steps < max_steps: | ||||
|             tm = MARLActorCriticMemory(self.n_agents) | ||||
|             obs = env.reset() | ||||
|             last_hiddens        = self.init_hidden() | ||||
|             last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents | ||||
|             done, rew_log       = [False]    * self.n_agents, 0 | ||||
|             tm.add(action=last_action, **last_hiddens) | ||||
|  | ||||
|             while not all(done): | ||||
|  | ||||
|                 out = self.forward(obs, last_action, **last_hiddens) | ||||
|                 action = self.get_actions(out) | ||||
|                 next_obs, reward, done, info = env.step(action) | ||||
|                 next_obs = next_obs | ||||
|                 if isinstance(done, bool): done = [done] * self.n_agents | ||||
|  | ||||
|                 tm.add(observation=obs, action=action, reward=reward, done=done) | ||||
|                 obs = next_obs | ||||
|                 last_action = action | ||||
|                 last_hiddens = dict(hidden_actor=out.get('hidden_actor', None), | ||||
|                                     hidden_critic=out.get('hidden_critic', None) | ||||
|                                     ) | ||||
|  | ||||
|                 if len(tm) >= n_steps or all(done): | ||||
|                     tm.add(observation=next_obs) | ||||
|                     if self.__training: | ||||
|                         with torch.inference_mode(False): | ||||
|                             self.learn(tm) | ||||
|                     tm.reset() | ||||
|                     tm.add(action=last_action, **last_hiddens) | ||||
|                 global_steps += 1 | ||||
|                 rew_log += sum(reward) | ||||
|                 reward_queue.extend(reward) | ||||
|  | ||||
|                 if checkpointer is not None: | ||||
|                     checkpointer.step([ | ||||
|                         (f'agent#{i}', agent) | ||||
|                         for i, agent in enumerate([self.net] if not isinstance(self.net, List) else self.net) | ||||
|                     ]) | ||||
|  | ||||
|                 if global_steps >= max_steps: break | ||||
|             print(f'reward at step: {global_steps} = {rew_log}') | ||||
|  | ||||
|     @torch.inference_mode(True) | ||||
|     def eval_loop(self, n_episodes, render=False): | ||||
|         env = instantiate_class(self.cfg['env']) | ||||
|         episode, results = 0, [] | ||||
|         while episode < n_episodes: | ||||
|             obs = env.reset() | ||||
|             last_hiddens           = self.init_hidden() | ||||
|             last_action, reward    = [-1] * self.n_agents, [0.] * self.n_agents | ||||
|             done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents) | ||||
|             while not all(done): | ||||
|                 if render: env.render() | ||||
|  | ||||
|                 out    = self.forward(obs, last_action, **last_hiddens) | ||||
|                 action = self.get_actions(out) | ||||
|                 next_obs, reward, done, info = env.step(action) | ||||
|  | ||||
|                 if isinstance(done, bool): done = [done] * obs.shape[0] | ||||
|                 obs = next_obs | ||||
|                 last_action = action | ||||
|                 last_hiddens = dict(hidden_actor=out.get('hidden_actor',   None), | ||||
|                                     hidden_critic=out.get('hidden_critic', None) | ||||
|                                     ) | ||||
|                 eps_rew += torch.tensor(reward) | ||||
|             results.append(eps_rew.tolist() + [sum(eps_rew).item()] + [episode]) | ||||
|             episode += 1 | ||||
|         agent_columns = [f'agent#{i}' for i in range(self.cfg['env']['n_agents'])] | ||||
|         results = pd.DataFrame(results, columns=agent_columns + ['sum', 'episode']) | ||||
|         results = pd.melt(results, id_vars=['episode'], value_vars=agent_columns + ['sum'], value_name='reward', var_name='agent') | ||||
|         return results | ||||
|  | ||||
|     @staticmethod | ||||
|     def compute_advantages(critic, reward, done, gamma): | ||||
|         return (reward + gamma * (1.0 - done) * critic[:, 1:].detach()) - critic[:, :-1] | ||||
|  | ||||
|     def actor_critic(self, tm, network, gamma, entropy_coef, vf_coef, **kwargs): | ||||
|         obs, actions, done, reward = tm.observation, tm.action, tm.done, tm.reward | ||||
|  | ||||
|         out = network(obs, actions, tm.hidden_actor, tm.hidden_critic) | ||||
|         logits = out['logits'][:, :-1]  # last one only needed for v_{t+1} | ||||
|         critic = out['critic'] | ||||
|  | ||||
|         entropy_loss = Categorical(logits=logits).entropy().mean(-1) | ||||
|         advantages = self.compute_advantages(critic, reward, done, gamma) | ||||
|         value_loss = advantages.pow(2).mean(-1)  # n_agent | ||||
|  | ||||
|         # policy loss | ||||
|         log_ap = torch.log_softmax(logits, -1) | ||||
|         log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze() | ||||
|         a2c_loss = -(advantages.detach() * log_ap).mean(-1) | ||||
|         # weighted loss | ||||
|         loss = a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss | ||||
|  | ||||
|         return loss.mean() | ||||
|  | ||||
|     def learn(self, tm: MARLActorCriticMemory, **kwargs): | ||||
|         loss = self.actor_critic(tm, self.net, **self.cfg['algorithm'], **kwargs) | ||||
|         # remove next_obs, will be added in next iter | ||||
|         self.optimizer.zero_grad() | ||||
|         loss.backward() | ||||
|         torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5) | ||||
|         self.optimizer.step() | ||||
|  | ||||
							
								
								
									
										24
									
								
								algorithms/marl/example_config.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								algorithms/marl/example_config.yaml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| agent: | ||||
|   classname:           algorithms.marl.networks.RecurrentAC | ||||
|   n_agents:            2 | ||||
|   obs_emb_size:        96 | ||||
|   action_emb_size:     16 | ||||
|   hidden_size_actor:   64 | ||||
|   hidden_size_critic:  64 | ||||
|   use_agent_embedding: False | ||||
| env: | ||||
|   classname:          environments.factory.make | ||||
|   env_name:           "DirtyFactory-v0" | ||||
|   n_agents:           2 | ||||
|   max_steps:          250 | ||||
|   pomdp_r:            2 | ||||
|   stack_n_frames:     0 | ||||
|   individual_rewards: True | ||||
| method:               algorithms.marl.LoopSEAC | ||||
| algorithm: | ||||
|   gamma:              0.99 | ||||
|   entropy_coef:       0.01 | ||||
|   vf_coef:            0.5 | ||||
|   n_steps:            5 | ||||
|   max_steps:          1000000 | ||||
|  | ||||
							
								
								
									
										58
									
								
								algorithms/marl/iac.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								algorithms/marl/iac.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,58 @@ | ||||
| import torch | ||||
| from algorithms.marl.base_ac import BaseActorCritic | ||||
| from algorithms.utils import instantiate_class | ||||
| from pathlib import Path | ||||
| from natsort import natsorted | ||||
| from algorithms.marl.memory import MARLActorCriticMemory | ||||
|  | ||||
|  | ||||
| class LoopIAC(BaseActorCritic): | ||||
|  | ||||
|     def __init__(self, cfg): | ||||
|         super(LoopIAC, self).__init__(cfg) | ||||
|  | ||||
|     def setup(self): | ||||
|         self.net = [ | ||||
|             instantiate_class(self.cfg['agent']) for _ in range(self.n_agents) | ||||
|         ] | ||||
|         self.optimizer = [ | ||||
|             torch.optim.RMSprop(self.net[ag_i].parameters(), lr=3e-4, eps=1e-5) for ag_i in range(self.n_agents) | ||||
|         ] | ||||
|  | ||||
|     def load_state_dict(self, path: Path): | ||||
|         paths = natsorted(list(path.glob('*.pt'))) | ||||
|         print(list(paths)) | ||||
|         for path, net in zip(paths, self.net): | ||||
|             net.load_state_dict(torch.load(path)) | ||||
|  | ||||
|     @staticmethod | ||||
|     def merge_dicts(ds):  # todo could be recursive for more than 1 hierarchy | ||||
|         d = {} | ||||
|         for k in ds[0].keys(): | ||||
|             d[k] = [d[k] for d in ds] | ||||
|         return d | ||||
|  | ||||
|     def init_hidden(self): | ||||
|         ha  = [net.init_hidden_actor()  for net in self.net] | ||||
|         hc  = [net.init_hidden_critic() for net in self.net] | ||||
|         return dict(hidden_actor=ha, hidden_critic=hc) | ||||
|  | ||||
|     def forward(self, observations, actions, hidden_actor, hidden_critic): | ||||
|         outputs = [ | ||||
|             net( | ||||
|                 self._as_torch(observations[ag_i]).unsqueeze(0).unsqueeze(0),  # agents x time | ||||
|                 self._as_torch(actions[ag_i]).unsqueeze(0), | ||||
|                 hidden_actor[ag_i], | ||||
|                 hidden_critic[ag_i] | ||||
|                 ) for ag_i, net in enumerate(self.net) | ||||
|         ] | ||||
|         return self.merge_dicts(outputs) | ||||
|  | ||||
|     def learn(self, tms: MARLActorCriticMemory, **kwargs): | ||||
|         for ag_i in range(self.n_agents): | ||||
|             tm, net = tms(ag_i), self.net[ag_i] | ||||
|             loss = self.actor_critic(tm, net, **self.cfg['algorithm'], **kwargs) | ||||
|             self.optimizer[ag_i].zero_grad() | ||||
|             loss.backward() | ||||
|             torch.nn.utils.clip_grad_norm_(net.parameters(), 0.5) | ||||
|             self.optimizer[ag_i].step() | ||||
							
								
								
									
										131
									
								
								algorithms/marl/memory.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										131
									
								
								algorithms/marl/memory.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,131 @@ | ||||
| import torch | ||||
| from typing import Union, List | ||||
| from torch import Tensor | ||||
| import numpy as np | ||||
|  | ||||
|  | ||||
| class ActorCriticMemory(object): | ||||
|     def __init__(self): | ||||
|         self.reset() | ||||
|  | ||||
|     def reset(self): | ||||
|         self.__states  = [] | ||||
|         self.__actions = [] | ||||
|         self.__rewards = [] | ||||
|         self.__dones   = [] | ||||
|         self.__hiddens_actor = [] | ||||
|         self.__hiddens_critic = [] | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.__states) | ||||
|  | ||||
|     @property | ||||
|     def observation(self): | ||||
|         return torch.stack(self.__states, 0).unsqueeze(0)      # 1 x timesteps x hidden dim | ||||
|  | ||||
|     @property | ||||
|     def hidden_actor(self): | ||||
|         if len(self.__hiddens_actor) == 1: | ||||
|             return self.__hiddens_actor[0] | ||||
|         return torch.stack(self.__hiddens_actor, 0)  # layers x timesteps x hidden dim | ||||
|  | ||||
|     @property | ||||
|     def hidden_critic(self): | ||||
|         if len(self.__hiddens_critic) == 1: | ||||
|             return self.__hiddens_critic[0] | ||||
|         return torch.stack(self.__hiddens_critic, 0)  # layers x timesteps x hidden dim | ||||
|  | ||||
|     @property | ||||
|     def reward(self): | ||||
|         return  torch.tensor(self.__rewards).float().unsqueeze(0)  # 1 x timesteps | ||||
|  | ||||
|     @property | ||||
|     def action(self): | ||||
|         return torch.tensor(self.__actions).long().unsqueeze(0)  # 1 x timesteps+1 | ||||
|  | ||||
|     @property | ||||
|     def done(self): | ||||
|         return torch.tensor(self.__dones).float().unsqueeze(0)  # 1 x timesteps | ||||
|  | ||||
|     def add_observation(self, state:  Union[Tensor, np.ndarray]): | ||||
|         self.__states.append(state    if isinstance(state, Tensor) else torch.from_numpy(state)) | ||||
|  | ||||
|     def add_hidden_actor(self, hidden: Tensor): | ||||
|         # 1x layers x hidden dim | ||||
|         if len(hidden.shape) < 3: hidden = hidden.unsqueeze(0) | ||||
|         self.__hiddens_actor.append(hidden) | ||||
|  | ||||
|     def add_hidden_critic(self, hidden: Tensor): | ||||
|         # 1x layers x hidden dim | ||||
|         if len(hidden.shape) < 3: hidden = hidden.unsqueeze(0) | ||||
|         self.__hiddens_critic.append(hidden) | ||||
|  | ||||
|     def add_action(self, action: int): | ||||
|         self.__actions.append(action) | ||||
|  | ||||
|     def add_reward(self, reward: float): | ||||
|         self.__rewards.append(reward) | ||||
|  | ||||
|     def add_done(self, done:   bool): | ||||
|         self.__dones.append(done) | ||||
|  | ||||
|     def add(self, **kwargs): | ||||
|         for k, v in kwargs.items(): | ||||
|             func = getattr(ActorCriticMemory, f'add_{k}') | ||||
|             func(self, v) | ||||
|  | ||||
|  | ||||
| class MARLActorCriticMemory(object): | ||||
|     def __init__(self, n_agents): | ||||
|         self.n_agents = n_agents | ||||
|         self.memories = [ | ||||
|             ActorCriticMemory() for _ in range(n_agents) | ||||
|         ] | ||||
|  | ||||
|     def __call__(self, agent_i): | ||||
|         return self.memories[agent_i] | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.memories[0])  # todo add assertion check! | ||||
|  | ||||
|     def reset(self): | ||||
|         for mem in self.memories: | ||||
|             mem.reset() | ||||
|  | ||||
|     def add(self, **kwargs): | ||||
|         # todo try catch - print all possible functions | ||||
|         for agent_i in range(self.n_agents): | ||||
|             for k, v in kwargs.items(): | ||||
|                 func = getattr(ActorCriticMemory, f'add_{k}') | ||||
|                 func(self.memories[agent_i], v[agent_i]) | ||||
|  | ||||
|     @property | ||||
|     def observation(self): | ||||
|         all_obs = [mem.observation for mem in self.memories] | ||||
|         return torch.cat(all_obs, 0)  # agents x timesteps+1 x ... | ||||
|  | ||||
|     @property | ||||
|     def action(self): | ||||
|         all_actions = [mem.action for mem in self.memories] | ||||
|         return torch.cat(all_actions, 0)  # agents x timesteps+1 x ... | ||||
|  | ||||
|     @property | ||||
|     def done(self): | ||||
|         all_dones = [mem.done for mem in self.memories] | ||||
|         return torch.cat(all_dones, 0).float()  # agents x timesteps x ... | ||||
|  | ||||
|     @property | ||||
|     def reward(self): | ||||
|         all_rewards = [mem.reward for mem in self.memories] | ||||
|         return torch.cat(all_rewards, 0).float()  # agents x timesteps x ... | ||||
|  | ||||
|     @property | ||||
|     def hidden_actor(self): | ||||
|         all_ha = [mem.hidden_actor for mem in self.memories] | ||||
|         return torch.cat(all_ha, 0)  # agents x layers x  x timesteps x hidden dim | ||||
|  | ||||
|     @property | ||||
|     def hidden_critic(self): | ||||
|         all_hc = [mem.hidden_critic for mem in self.memories] | ||||
|         return torch.cat(all_hc, 0)  # agents  x layers x timesteps x hidden dim | ||||
|  | ||||
							
								
								
									
										91
									
								
								algorithms/marl/networks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										91
									
								
								algorithms/marl/networks.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,91 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import numpy as np | ||||
| import torch.nn.functional as F | ||||
| from torch.nn.utils import spectral_norm | ||||
|  | ||||
|  | ||||
| class RecurrentAC(nn.Module): | ||||
|     def __init__(self, observation_size, n_actions, obs_emb_size, | ||||
|                  action_emb_size, hidden_size_actor, hidden_size_critic, | ||||
|                  n_agents, use_agent_embedding=True): | ||||
|         super(RecurrentAC, self).__init__() | ||||
|         observation_size = np.prod(observation_size) | ||||
|         self.n_layers = 1 | ||||
|         self.use_agent_embedding = use_agent_embedding | ||||
|         self.hidden_size_actor = hidden_size_actor | ||||
|         self.hidden_size_critic = hidden_size_critic | ||||
|         self.action_emb_size    = action_emb_size | ||||
|         self.obs_proj   = nn.Linear(observation_size, obs_emb_size) | ||||
|         self.action_emb =  nn.Embedding(n_actions+1, action_emb_size, padding_idx=0) | ||||
|         self.agent_emb  =  nn.Embedding(n_agents, action_emb_size) | ||||
|         mix_in_size = obs_emb_size+action_emb_size if not use_agent_embedding else obs_emb_size+n_agents*action_emb_size | ||||
|         self.mix = nn.Sequential(nn.Tanh(), | ||||
|                                  nn.Linear(mix_in_size, obs_emb_size), | ||||
|                                  nn.Tanh(), | ||||
|                                  nn.Linear(obs_emb_size, obs_emb_size) | ||||
|                                  ) | ||||
|         self.gru_actor   = nn.GRU(obs_emb_size, hidden_size_actor, batch_first=True, num_layers=self.n_layers) | ||||
|         self.gru_critic  = nn.GRU(obs_emb_size, hidden_size_critic, batch_first=True, num_layers=self.n_layers) | ||||
|         self.action_head = nn.Sequential( | ||||
|             spectral_norm(nn.Linear(hidden_size_actor, hidden_size_actor)), | ||||
|             nn.Tanh(), | ||||
|             nn.Linear(hidden_size_actor, n_actions) | ||||
|         ) | ||||
|         self.critic_head = nn.Sequential( | ||||
|             nn.Linear(hidden_size_critic, hidden_size_critic), | ||||
|             nn.Tanh(), | ||||
|             nn.Linear(hidden_size_critic, 1) | ||||
|         ) | ||||
|         #self.action_head[-1].weight.data.uniform_(-3e-3, 3e-3) | ||||
|         #self.action_head[-1].bias.data.uniform_(-3e-3, 3e-3) | ||||
|  | ||||
|     def init_hidden_actor(self): | ||||
|         return torch.zeros(1, self.n_layers, self.hidden_size_actor) | ||||
|  | ||||
|     def init_hidden_critic(self): | ||||
|         return torch.zeros(1, self.n_layers, self.hidden_size_critic) | ||||
|  | ||||
|     def forward(self, observations, actions, hidden_actor=None, hidden_critic=None): | ||||
|         n_agents, t, *_ = observations.shape | ||||
|         obs_emb    = self.obs_proj(observations.view(n_agents, t, -1).float()) | ||||
|         action_emb = self.action_emb(actions+1)  # shift by one due to padding idx | ||||
|         agent_emb  = self.agent_emb( | ||||
|             torch.cat([torch.arange(0, n_agents, 1).view(-1, 1)]*t, 1) | ||||
|         ) | ||||
|         x_t        = torch.cat((obs_emb, action_emb), -1) \ | ||||
|             if not self.use_agent_embedding else torch.cat((obs_emb, agent_emb, action_emb), -1) | ||||
|  | ||||
|  | ||||
|         mixed_x_t   = self.mix(x_t) | ||||
|         output_p, _ = self.gru_actor(input=mixed_x_t,  hx=hidden_actor.swapaxes(1, 0)) | ||||
|         output_c, _ = self.gru_critic(input=mixed_x_t, hx=hidden_critic.swapaxes(1, 0)) | ||||
|  | ||||
|         logits = self.action_head(output_p) | ||||
|         critic = self.critic_head(output_c).squeeze(-1) | ||||
|         return dict(logits=logits, critic=critic, hidden_actor=output_p, hidden_critic=output_c) | ||||
|  | ||||
|  | ||||
|  | ||||
| class NormalizedLinear(nn.Linear): | ||||
|     def __init__(self, in_features: int, out_features: int, | ||||
|                  device=None, dtype=None, trainable_magnitude=False): | ||||
|         super(NormalizedLinear, self).__init__(in_features, out_features, False, device, dtype) | ||||
|         self.d_sqrt = in_features**0.5 | ||||
|         self.trainable_magnitude = trainable_magnitude | ||||
|         self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude) | ||||
|  | ||||
|     def forward(self, input): | ||||
|         normalized_input = F.normalize(input, dim=-1, p=2, eps=1e-5) | ||||
|         normalized_weight = F.normalize(self.weight, dim=-1, p=2, eps=1e-5) | ||||
|         return F.linear(normalized_input, normalized_weight) * self.d_sqrt * self.scale | ||||
|  | ||||
|  | ||||
| class L2Norm(nn.Module): | ||||
|     def __init__(self, in_features, trainable_magnitude=False): | ||||
|         super(L2Norm, self).__init__() | ||||
|         self.d_sqrt = in_features**0.5 | ||||
|         self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return F.normalize(x, dim=-1, p=2, eps=1e-5) * self.d_sqrt * self.scale | ||||
							
								
								
									
										55
									
								
								algorithms/marl/seac.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								algorithms/marl/seac.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,55 @@ | ||||
| import torch | ||||
| from torch.distributions import Categorical | ||||
| from algorithms.marl.iac import LoopIAC | ||||
| from algorithms.marl.memory import MARLActorCriticMemory | ||||
|  | ||||
|  | ||||
| class LoopSEAC(LoopIAC): | ||||
|     def __init__(self, cfg): | ||||
|         super(LoopSEAC, self).__init__(cfg) | ||||
|  | ||||
|     def actor_critic(self, tm, networks, gamma, entropy_coef, vf_coef, **kwargs): | ||||
|         obs, actions, done, reward = tm.observation, tm.action, tm.done, tm.reward | ||||
|         outputs = [net(obs, actions, tm.hidden_actor, tm.hidden_critic) for net in networks] | ||||
|  | ||||
|         with torch.inference_mode(True): | ||||
|             true_action_logp = torch.stack([ | ||||
|                 torch.log_softmax(out['logits'][ag_i, :-1], -1) | ||||
|                     .gather(index=actions[ag_i, 1:, None], dim=-1) | ||||
|                 for ag_i, out in enumerate(outputs) | ||||
|             ], 0).squeeze() | ||||
|  | ||||
|         losses = [] | ||||
|  | ||||
|         for ag_i, out in enumerate(outputs): | ||||
|             logits = out['logits'][:, :-1]  # last one only needed for v_{t+1} | ||||
|             critic = out['critic'] | ||||
|  | ||||
|             entropy_loss = Categorical(logits=logits[ag_i]).entropy().mean() | ||||
|             advantages = self.compute_advantages(critic, reward, done, gamma) | ||||
|  | ||||
|             # policy loss | ||||
|             log_ap = torch.log_softmax(logits, -1) | ||||
|             log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze() | ||||
|  | ||||
|             # importance weights | ||||
|             iw = (log_ap - true_action_logp).exp().detach()  # importance_weights | ||||
|  | ||||
|             a2c_loss = (-iw*log_ap * advantages.detach()).mean(-1) | ||||
|  | ||||
|  | ||||
|             value_loss = (iw*advantages.pow(2)).mean(-1)  # n_agent | ||||
|  | ||||
|             # weighted loss | ||||
|             loss = (a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss).mean() | ||||
|             losses.append(loss) | ||||
|  | ||||
|         return losses | ||||
|  | ||||
|     def learn(self, tms: MARLActorCriticMemory, **kwargs): | ||||
|         losses = self.actor_critic(tms, self.net, **self.cfg['algorithm'], **kwargs) | ||||
|         for ag_i, loss in enumerate(losses): | ||||
|             self.optimizer[ag_i].zero_grad() | ||||
|             loss.backward() | ||||
|             torch.nn.utils.clip_grad_norm_(self.net[ag_i].parameters(), 0.5) | ||||
|             self.optimizer[ag_i].step() | ||||
							
								
								
									
										32
									
								
								algorithms/marl/snac.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								algorithms/marl/snac.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,32 @@ | ||||
| from algorithms.marl.base_ac import BaseActorCritic | ||||
| import torch | ||||
| from torch.distributions import Categorical | ||||
| from pathlib import Path | ||||
|  | ||||
|  | ||||
| class LoopSNAC(BaseActorCritic): | ||||
|     def __init__(self, cfg): | ||||
|         super().__init__(cfg) | ||||
|  | ||||
|     def load_state_dict(self, path: Path): | ||||
|         path2weights = list(path.glob('*.pt')) | ||||
|         assert len(path2weights) == 1, f'Expected a single set of weights but got {len(path2weights)}' | ||||
|         self.net.load_state_dict(torch.load(path2weights[0])) | ||||
|  | ||||
|     def init_hidden(self): | ||||
|         hidden_actor = self.net.init_hidden_actor() | ||||
|         hidden_critic = self.net.init_hidden_critic() | ||||
|         return dict(hidden_actor=torch.cat([hidden_actor]   * self.n_agents,  0), | ||||
|                     hidden_critic=torch.cat([hidden_critic] * self.n_agents,  0) | ||||
|                     ) | ||||
|  | ||||
|     def get_actions(self, out): | ||||
|         actions = Categorical(logits=out['logits']).sample().squeeze() | ||||
|         return actions | ||||
|  | ||||
|     def forward(self, observations, actions, hidden_actor, hidden_critic): | ||||
|         out = self.net(self._as_torch(observations).unsqueeze(1), | ||||
|                        self._as_torch(actions).unsqueeze(1), | ||||
|                        hidden_actor, hidden_critic | ||||
|                        ) | ||||
|         return out | ||||
| @@ -1,127 +0,0 @@ | ||||
| from typing import Union | ||||
| import gym | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import numpy as np | ||||
| from collections import deque | ||||
| from pathlib import Path | ||||
| import yaml | ||||
| from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience | ||||
|  | ||||
|  | ||||
| class QLearner(BaseLearner): | ||||
|     def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1, | ||||
|                  gamma=0.99, train_every=('step', 4), n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2, | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1): | ||||
|         super(QLearner, self).__init__(env, n_agents, train_every, n_grad_steps) | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.target_q_net.eval() | ||||
|         #soft_update(cls.q_net, cls.target_q_net, tau=1.0) | ||||
|         self.buffer = BaseBuffer(buffer_size) | ||||
|         self.target_update = target_update | ||||
|         self.eps = eps_start | ||||
|         self.eps_start = eps_start | ||||
|         self.eps_end = eps_end | ||||
|         self.exploration_fraction = exploration_fraction | ||||
|         self.batch_size = batch_size | ||||
|         self.gamma = gamma | ||||
|         self.tau = tau | ||||
|         self.reg_weight = reg_weight | ||||
|         self.weight_decay = weight_decay | ||||
|         self.lr = lr | ||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr, weight_decay=self.weight_decay) | ||||
|         self.max_grad_norm = max_grad_norm | ||||
|         self.running_reward = deque(maxlen=5) | ||||
|         self.running_loss = deque(maxlen=5) | ||||
|         self.n_updates = 0 | ||||
|  | ||||
|     def save(self, path): | ||||
|         path = Path(path)  # no-op if already instance of Path | ||||
|         path.mkdir(parents=True, exist_ok=True) | ||||
|         hparams = {k: v for k, v in self.__dict__.items() if not(isinstance(v, BaseBuffer) or | ||||
|                                                                  isinstance(v, torch.optim.Optimizer) or | ||||
|                                                                  isinstance(v, gym.Env) or | ||||
|                                                                  isinstance(v, nn.Module)) | ||||
|                    } | ||||
|         hparams.update({'class': self.__class__.__name__}) | ||||
|         with (path / 'hparams.yaml').open('w') as outfile: | ||||
|             yaml.dump(hparams, outfile) | ||||
|         torch.save(self.q_net, path / 'q_net.pt') | ||||
|  | ||||
|     def anneal_eps(self, step, n_steps): | ||||
|         fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0) | ||||
|         self.eps = 1 + fraction * (self.eps_end - 1) | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) | ||||
|         if np.random.rand() > self.eps: | ||||
|             action = self.q_net.act(o.float()) | ||||
|         else: | ||||
|             action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)]) | ||||
|         return action | ||||
|  | ||||
|     def on_new_experience(self, experience): | ||||
|         self.buffer.add(experience) | ||||
|  | ||||
|     def on_step_end(self, n_steps): | ||||
|         self.anneal_eps(self.step, n_steps) | ||||
|         if self.step % self.target_update == 0: | ||||
|             print('UPDATE') | ||||
|             soft_update(self.q_net, self.target_q_net, tau=self.tau) | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|     def _backprop_loss(self, loss): | ||||
|         # log loss | ||||
|         self.running_loss.append(loss.item()) | ||||
|         # Optimize the model | ||||
|         self.optimizer.zero_grad() | ||||
|         loss.backward() | ||||
|         torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm) | ||||
|         self.optimizer.step() | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1]) | ||||
|             pred_q, target_q_raw = self._training_routine(experience.observation, | ||||
|                                                           experience.next_observation, | ||||
|                                                           experience.action) | ||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             self._backprop_loss(loss) | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.factory_dirt import DirtFactory, DirtProperties, MovementProperties | ||||
|     from algorithms.common import BaseDDQN, BaseICM | ||||
|     from algorithms.m_q_learner import MQLearner, MQICMLearner | ||||
|     from algorithms.vdn_learner import VDNLearner | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     with (Path(f'../environments/factory/env_default_param.yaml')).open('r') as f: | ||||
|         env_kwargs = yaml.load(f, Loader=yaml.FullLoader) | ||||
|  | ||||
|     env = DirtFactory(**env_kwargs) | ||||
|     obs_shape = np.prod(env.observation_space.shape) | ||||
|     n_actions = env.action_space.n | ||||
|  | ||||
|     dqn, target_dqn = BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128, 1], activation='leaky_relu'),\ | ||||
|                       BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128, 1], activation='leaky_relu') | ||||
|  | ||||
|     icm = BaseICM(backbone_dims=[obs_shape, 64, 32], head_dims=[2*32, 64, n_actions]) | ||||
|  | ||||
|     learner = MQICMLearner(dqn, target_dqn, env, 50000, icm=icm, | ||||
|                            target_update=5000, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                            train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, | ||||
|                            batch_size=64, weight_decay=1e-3 | ||||
|                            ) | ||||
|     #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') | ||||
|     learner.learn(100000) | ||||
| @@ -1,52 +0,0 @@ | ||||
| import numpy as np | ||||
| import torch | ||||
| import stable_baselines3 as sb3 | ||||
| from stable_baselines3.common import logger | ||||
|  | ||||
|  | ||||
| class RegDQN(sb3.dqn.DQN): | ||||
|     def __init__(self, *args, reg_weight=0.1, **kwargs): | ||||
|         super().__init__(*args, **kwargs) | ||||
|         self.reg_weight = reg_weight | ||||
|  | ||||
|     def train(self, gradient_steps: int, batch_size: int = 100) -> None: | ||||
|         # Update learning rate according to schedule | ||||
|         self._update_learning_rate(self.policy.optimizer) | ||||
|  | ||||
|         losses = [] | ||||
|         for _ in range(gradient_steps): | ||||
|             # Sample replay buffer | ||||
|             replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env) | ||||
|  | ||||
|             with torch.no_grad(): | ||||
|                 # Compute the next Q-values using the target network | ||||
|                 next_q_values = self.q_net_target(replay_data.next_observations) | ||||
|                 # Follow greedy policy: use the one with the highest value | ||||
|                 next_q_values, _ = next_q_values.max(dim=1) | ||||
|                 # Avoid potential broadcast issue | ||||
|                 next_q_values = next_q_values.reshape(-1, 1) | ||||
|                 # 1-step TD target | ||||
|                 target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values | ||||
|  | ||||
|             # Get current Q-values estimates | ||||
|             current_q_values = self.q_net(replay_data.observations) | ||||
|  | ||||
|             # Retrieve the q-values for the actions from the replay buffer | ||||
|             current_q_values = torch.gather(current_q_values, dim=1, index=replay_data.actions.long()) | ||||
|  | ||||
|             delta = current_q_values - target_q_values | ||||
|             loss = torch.mean(self.reg_weight * current_q_values + torch.pow(delta, 2)) | ||||
|             losses.append(loss.item()) | ||||
|  | ||||
|             # Optimize the policy | ||||
|             self.policy.optimizer.zero_grad() | ||||
|             loss.backward() | ||||
|             # Clip gradient norm | ||||
|             torch.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) | ||||
|             self.policy.optimizer.step() | ||||
|  | ||||
|         # Increase update counter | ||||
|         self._n_updates += gradient_steps | ||||
|  | ||||
|         logger.record("train/n_updates", self._n_updates, exclude="tensorboard") | ||||
|         logger.record("train/loss", np.mean(losses)) | ||||
| @@ -3,14 +3,51 @@ import torch | ||||
| import numpy as np | ||||
| import yaml | ||||
| from pathlib import Path | ||||
| from salina import instantiate_class | ||||
| from salina import TAgent | ||||
| from salina.agents.gyma import ( | ||||
|     AutoResetGymAgent, | ||||
|     _torch_type, | ||||
|     _format_frame, | ||||
|     _torch_cat_dict | ||||
| ) | ||||
|  | ||||
|  | ||||
| def load_class(classname): | ||||
|     from importlib import import_module | ||||
|     module_path, class_name = classname.rsplit(".", 1) | ||||
|     module = import_module(module_path) | ||||
|     c = getattr(module, class_name) | ||||
|     return c | ||||
|  | ||||
|  | ||||
| def instantiate_class(arguments): | ||||
|     from importlib import import_module | ||||
|  | ||||
|     d = dict(arguments) | ||||
|     classname = d["classname"] | ||||
|     del d["classname"] | ||||
|     module_path, class_name = classname.rsplit(".", 1) | ||||
|     module = import_module(module_path) | ||||
|     c = getattr(module, class_name) | ||||
|     return c(**d) | ||||
|  | ||||
|  | ||||
| def get_class(arguments): | ||||
|     from importlib import import_module | ||||
|  | ||||
|     if isinstance(arguments, dict): | ||||
|         classname = arguments["classname"] | ||||
|         module_path, class_name = classname.rsplit(".", 1) | ||||
|         module = import_module(module_path) | ||||
|         c = getattr(module, class_name) | ||||
|         return c | ||||
|     else: | ||||
|         classname = arguments.classname | ||||
|         module_path, class_name = classname.rsplit(".", 1) | ||||
|         module = import_module(module_path) | ||||
|         c = getattr(module, class_name) | ||||
|         return c | ||||
|  | ||||
|  | ||||
| def get_arguments(arguments): | ||||
|     from importlib import import_module | ||||
|     d = dict(arguments) | ||||
|     if "classname" in d: | ||||
|         del d["classname"] | ||||
|     return d | ||||
|  | ||||
|  | ||||
| def load_yaml_file(path: Path): | ||||
| @@ -21,90 +58,29 @@ def load_yaml_file(path: Path): | ||||
|  | ||||
| def add_env_props(cfg): | ||||
|     env = instantiate_class(cfg['env'].copy()) | ||||
|     cfg['agent'].update(dict(observation_size=env.observation_space.shape, | ||||
|     cfg['agent'].update(dict(observation_size=list(env.observation_space.shape), | ||||
|                              n_actions=env.action_space.n)) | ||||
|  | ||||
|  | ||||
| class Checkpointer(object): | ||||
|     def __init__(self, experiment_name, root, config, total_steps, n_checkpoints): | ||||
|         self.path = root / experiment_name | ||||
|         self.checkpoint_indices = list(np.linspace(1, total_steps, n_checkpoints, dtype=int) - 1) | ||||
|         self.__current_checkpoint = 0 | ||||
|         self.__current_step = 0 | ||||
|         self.path.mkdir(exist_ok=True, parents=True) | ||||
|         with (self.path / 'config.yaml').open('w') as outfile: | ||||
|             yaml.dump(config, outfile, default_flow_style=False) | ||||
|  | ||||
|     def save_experiment(self, name: str, model): | ||||
|         cpt_path = self.path / f'checkpoint_{self.__current_checkpoint}' | ||||
|         cpt_path.mkdir(exist_ok=True, parents=True) | ||||
|         torch.save(model.state_dict(), cpt_path / f'{name}.pt') | ||||
|  | ||||
| AGENT_PREFIX = 'agent#' | ||||
| REWARD       =  'reward' | ||||
| CUMU_REWARD  = 'cumulated_reward' | ||||
| OBS          = 'env_obs' | ||||
| SEP          = '_' | ||||
| ACTION       = 'action' | ||||
|  | ||||
|  | ||||
| def access_str(agent_i, name, prefix=''): | ||||
|     return f'{prefix}{AGENT_PREFIX}{agent_i}{SEP}{name}' | ||||
|  | ||||
|  | ||||
| class AutoResetGymMultiAgent(AutoResetGymAgent): | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         super(AutoResetGymMultiAgent, self).__init__(*args, **kwargs) | ||||
|  | ||||
|     def per_agent_values(self, name, values): | ||||
|         return {access_str(agent_i, name): value | ||||
|                 for agent_i, value in zip(range(self.n_agents), values)} | ||||
|  | ||||
|     def _initialize_envs(self, n): | ||||
|         super()._initialize_envs(n) | ||||
|         n_agents_list = [self.envs[i].unwrapped.n_agents for i in range(n)] | ||||
|         assert all(n_agents == n_agents_list[0] for n_agents in n_agents_list), \ | ||||
|             'All envs must have the same number of agents.' | ||||
|         self.n_agents = n_agents_list[0] | ||||
|  | ||||
|     def _reset(self, k, save_render): | ||||
|         ret = super()._reset(k, save_render) | ||||
|         obs = ret['env_obs'].squeeze() | ||||
|         self.cumulated_reward[k] = [0.0]*self.n_agents | ||||
|         obs      = self.per_agent_values(OBS,  [_format_frame(obs[i]) for i in range(self.n_agents)]) | ||||
|         cumu_rew = self.per_agent_values(CUMU_REWARD, torch.zeros(self.n_agents, 1).float().unbind()) | ||||
|         rewards  = self.per_agent_values(REWARD,      torch.zeros(self.n_agents, 1).float().unbind()) | ||||
|         ret.update(cumu_rew) | ||||
|         ret.update(rewards) | ||||
|         ret.update(obs) | ||||
|         for remove in ['env_obs', 'cumulated_reward', 'reward']: | ||||
|             del ret[remove] | ||||
|         return ret | ||||
|  | ||||
|     def _step(self, k, action, save_render): | ||||
|         self.timestep[k] += 1 | ||||
|         env = self.envs[k] | ||||
|         if len(action.size()) == 0: | ||||
|             action = action.item() | ||||
|             assert isinstance(action, int) | ||||
|         else: | ||||
|             action = np.array(action.tolist()) | ||||
|         o, r, d, _ = env.step(action) | ||||
|         self.cumulated_reward[k] = [x+y for x, y in zip(r, self.cumulated_reward[k])] | ||||
|         observation = self.per_agent_values(OBS, [_format_frame(o[i]) for i in range(self.n_agents)]) | ||||
|         if d: | ||||
|             self.is_running[k] = False | ||||
|         if save_render: | ||||
|             image = env.render(mode="image").unsqueeze(0) | ||||
|             observation["rendering"] = image | ||||
|         rewards           = self.per_agent_values(REWARD, torch.tensor(r).float().view(-1, 1).unbind()) | ||||
|         cumulated_rewards = self.per_agent_values(CUMU_REWARD, torch.tensor(self.cumulated_reward[k]).float().view(-1, 1).unbind()) | ||||
|         ret = { | ||||
|             **observation, | ||||
|             **rewards, | ||||
|             **cumulated_rewards, | ||||
|             "done": torch.tensor([d]), | ||||
|             "initial_state": torch.tensor([False]), | ||||
|             "timestep": torch.tensor([self.timestep[k]]) | ||||
|         } | ||||
|         return _torch_type(ret) | ||||
|  | ||||
|  | ||||
| class CombineActionsAgent(TAgent): | ||||
|     def __init__(self): | ||||
|         super().__init__() | ||||
|         self.pattern = fr'^{AGENT_PREFIX}\d{SEP}{ACTION}$' | ||||
|  | ||||
|     def forward(self, t, **kwargs): | ||||
|         keys = list(self.workspace.keys()) | ||||
|         action_keys = sorted([k for k in keys if bool(re.match(self.pattern, k))]) | ||||
|         actions = torch.cat([self.get((k, t)) for k in action_keys], 0) | ||||
|         actions = actions if len(action_keys) <= 1 else actions.unsqueeze(0) | ||||
|         self.set((f'action', t), actions) | ||||
|     def step(self, to_save): | ||||
|         if self.__current_step in self.checkpoint_indices: | ||||
|             print(f'Checkpointing #{self.__current_checkpoint}') | ||||
|             for name, model in to_save: | ||||
|                 self.save_experiment(name, model) | ||||
|             self.__current_checkpoint += 1 | ||||
|         self.__current_step += 1 | ||||
| @@ -1,55 +0,0 @@ | ||||
| from typing import Union | ||||
| import torch | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| from algorithms.q_learner import QLearner | ||||
|  | ||||
|  | ||||
| class VDNLearner(QLearner): | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         super(VDNLearner, self).__init__(*args, **kwargs) | ||||
|         assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead' | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) | ||||
|         eps = np.random.rand(self.n_agents) | ||||
|         greedy = eps > self.eps | ||||
|         agent_actions = None | ||||
|         actions = [] | ||||
|         for i in range(self.n_agents): | ||||
|             if greedy[i]: | ||||
|                 if agent_actions is None: agent_actions = self.q_net.act(o.float()) | ||||
|                 action = agent_actions[i] | ||||
|             else: | ||||
|                 action = self.env.action_space.sample() | ||||
|             actions.append(action) | ||||
|         return np.array(actions) | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|             pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) | ||||
|             for agent_i in range(self.n_agents): | ||||
|                 q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], | ||||
|                                                                      experience.next_observation[:, agent_i], | ||||
|                                                                      experience.action[:, agent_i].unsqueeze(-1)) | ||||
|                 pred_q += q_values | ||||
|                 target_q_raw += next_q_values_raw | ||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             self._backprop_loss(loss) | ||||
|  | ||||
|     def evaluate(self, n_episodes=100, render=False): | ||||
|         with torch.no_grad(): | ||||
|             data = [] | ||||
|             for eval_i in range(n_episodes): | ||||
|                 obs, done = self.env.reset(), False | ||||
|                 while not done: | ||||
|                     action = self.get_action(obs) | ||||
|                     next_obs, reward, done, info = self.env.step(action) | ||||
|                     if render: self.env.render() | ||||
|                     obs = next_obs  # srsly i'm so stupid | ||||
|                     info.update({'reward': reward, 'eval_episode': eval_i}) | ||||
|                     data.append(info) | ||||
|         return pd.DataFrame(data).fillna(0) | ||||
| @@ -1,22 +1,25 @@ | ||||
| def make(env_name, pomdp_r=2, max_steps=400, stack_n_frames=3, n_agents=1,  individual_rewards=False): | ||||
| def make(env_name, pomdp_r=2, max_steps=400, stack_n_frames=3, n_agents=1, individual_rewards=False): | ||||
|     import yaml | ||||
|     from pathlib import Path | ||||
|     from environments.factory.combined_factories import DirtItemFactory | ||||
|     from environments.factory.factory_item import ItemFactory, ItemProperties | ||||
|     from environments.factory.factory_dirt import DirtProperties, DirtFactory | ||||
|     from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions | ||||
|     from environments.factory.factory_dirt import DirtProperties, DirtFactory, RewardsDirt | ||||
|     from environments.utility_classes import AgentRenderOptions | ||||
|  | ||||
|     with (Path(__file__).parent / 'levels' / 'parameters' / f'{env_name}.yaml').open('r') as stream: | ||||
|         dictionary = yaml.load(stream, Loader=yaml.FullLoader) | ||||
|  | ||||
|     obs_props = ObservationProperties(render_agents=AgentRenderOptions.COMBINED, | ||||
|                                       frames_to_stack=stack_n_frames, pomdp_r=pomdp_r) | ||||
|     obs_props = dict(render_agents=AgentRenderOptions.COMBINED, | ||||
|                      pomdp_r=pomdp_r, | ||||
|                      indicate_door_area=True, | ||||
|                      show_global_position_info=False, | ||||
|                      frames_to_stack=stack_n_frames) | ||||
|  | ||||
|     factory_kwargs = dict(n_agents=n_agents, individual_rewards=individual_rewards, | ||||
|                           max_steps=max_steps, obs_prop=obs_props, | ||||
|                           mv_prop=MovementProperties(**dictionary['movement_props']), | ||||
|                           dirt_prop=DirtProperties(**dictionary['dirt_props']), | ||||
|                           record_episodes=False, verbose=False, **dictionary['factory_props'] | ||||
|     factory_kwargs = dict(**dictionary, | ||||
|                           n_agents=n_agents, | ||||
|                           individual_rewards=individual_rewards, | ||||
|                           max_steps=max_steps, | ||||
|                           obs_prop=obs_props, | ||||
|                           verbose=False, | ||||
|                           ) | ||||
|  | ||||
|     return DirtFactory(**factory_kwargs).__enter__() | ||||
|   | ||||
| @@ -1,8 +1,12 @@ | ||||
| movement_props: | ||||
| parse_doors:                True | ||||
| doors_have_area:            True | ||||
| done_at_collision:          False | ||||
| level_name:                 "rooms" | ||||
| mv_prop: | ||||
|     allow_diagonal_movement:    True | ||||
|     allow_square_movement:      True | ||||
|     allow_no_op:                False | ||||
| dirt_props: | ||||
| dirt_prop: | ||||
|     initial_dirt_ratio:         0.35 | ||||
|     initial_dirt_spawn_r_var :  0.1 | ||||
|     clean_amount:               0.34 | ||||
| @@ -12,8 +16,15 @@ dirt_props: | ||||
|     spawn_frequency:            0 | ||||
|     max_spawn_ratio:            0.05 | ||||
|     dirt_smear_amount:          0.0 | ||||
|     agent_can_interact:         True | ||||
| factory_props: | ||||
|     parse_doors:                True | ||||
|     level_name:                 "rooms" | ||||
|     doors_have_area:            False | ||||
|     done_when_clean:            True | ||||
| rewards_base: | ||||
|     MOVEMENTS_VALID:    0 | ||||
|     MOVEMENTS_FAIL:     0 | ||||
|     NOOP:               0 | ||||
|     USE_DOOR_VALID:     0 | ||||
|     USE_DOOR_FAIL:      0 | ||||
|     COLLISION:          0 | ||||
| rewards_dirt: | ||||
|     CLEAN_UP_VALID:       1 | ||||
|     CLEAN_UP_FAIL:        0 | ||||
|     CLEAN_UP_LAST_PIECE:  5 | ||||
| @@ -6,7 +6,7 @@ matplotlib>=3.4.1 | ||||
| stable-baselines3>=1.0 | ||||
| pygame>=2.1.0 | ||||
| gym>=0.18.0 | ||||
| networkx>=2.6.1 | ||||
| networkx>=2.6.3 | ||||
| simplejson>=3.17.5 | ||||
| PyYAML>=6.0 | ||||
| git+https://github.com/facebookresearch/salina.git@main#egg=salina | ||||
| einops | ||||
							
								
								
									
										24
									
								
								studies/normalization_study.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								studies/normalization_study.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| from algorithms.utils import Checkpointer | ||||
| from pathlib import Path | ||||
| from algorithms.utils import load_yaml_file, add_env_props, instantiate_class, load_class | ||||
| from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC | ||||
|  | ||||
|  | ||||
| #study_root = Path(__file__).parent / 'curious_study' | ||||
| study_root = Path('/Users/romue/PycharmProjects/EDYS/algorithms/marl') | ||||
|  | ||||
| for i in range(0, 5): | ||||
|     for name in ['example_config']: | ||||
|         cfg = load_yaml_file(study_root / f'{name}.yaml') | ||||
|         add_env_props(cfg) | ||||
|  | ||||
|         env = instantiate_class(cfg['env']) | ||||
|         net = instantiate_class(cfg['agent']) | ||||
|         max_steps = cfg['algorithm']['max_steps'] | ||||
|         n_steps = cfg['algorithm']['n_steps'] | ||||
|  | ||||
|         checkpointer = Checkpointer(f'{name}#{i}', study_root, cfg, max_steps, 250) | ||||
|  | ||||
|         loop = load_class(cfg['method'])(cfg) | ||||
|         df = loop.train_loop(checkpointer) | ||||
|  | ||||
							
								
								
									
										32
									
								
								studies/playground_file.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								studies/playground_file.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,32 @@ | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| from pathlib import Path | ||||
| import matplotlib.pyplot as plt | ||||
| import seaborn as sns | ||||
|  | ||||
| study_root = Path(__file__).parent / 'entropy_study' | ||||
| names_all = ['basic_gru', 'layernorm_gru', 'spectralnorm_gru', 'nonorm_gru'] | ||||
| names_only_1 = ['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru', 'basic_gru'] | ||||
| names_only_2 = ['L2NoCh_gru', 'L2NoAh_gru', 'nomix_gru', 'basic_gru'] | ||||
|  | ||||
| names = names_only_2 | ||||
| #names = ['nonorm_gru'] | ||||
| # /Users/romue/PycharmProjects/EDYS/studies/normalization_study/basic_gru#3 | ||||
| csvs = [] | ||||
| for name in ['basic_gru', 'nonorm_gru', 'spectralnorm_gru']: | ||||
|     for run in range(0, 1): | ||||
|         try: | ||||
|             df = pd.read_csv(study_root / f'{name}#{run}' / 'results.csv') | ||||
|             df = df[df.agent == 'sum'] | ||||
|             df = df.groupby(['checkpoint', 'run']).mean().reset_index() | ||||
|             df['method'] = name | ||||
|             df['run_'] = run | ||||
|  | ||||
|             df.reward = df.reward.rolling(15).mean() | ||||
|             csvs.append(df) | ||||
|         except Exception as e: | ||||
|             print(f'skipped {run}\t {name}') | ||||
|  | ||||
| csvs = pd.concat(csvs).rename(columns={"checkpoint": "steps*2e3", "B": "c"}) | ||||
| sns.lineplot(data=csvs, x='steps*2e3', y='reward', hue='method', palette='husl', ci='sd', linewidth=1.8) | ||||
| plt.savefig('entropy.png') | ||||
| @@ -1,139 +0,0 @@ | ||||
| from salina.agents.gyma import AutoResetGymAgent | ||||
| from salina.agents import Agents, TemporalAgent | ||||
| from salina.rl.functional import _index, gae | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions import Categorical | ||||
| from salina import TAgent, Workspace, get_arguments, get_class, instantiate_class | ||||
| from pathlib import Path | ||||
| import numpy as np | ||||
| from tqdm import tqdm | ||||
| import time | ||||
| from algorithms.utils import ( | ||||
|     add_env_props, | ||||
|     load_yaml_file, | ||||
|     CombineActionsAgent, | ||||
|     AutoResetGymMultiAgent, | ||||
|     access_str, | ||||
|     AGENT_PREFIX, REWARD, CUMU_REWARD, OBS, SEP | ||||
| ) | ||||
|  | ||||
|  | ||||
| class A2CAgent(TAgent): | ||||
|     def __init__(self, observation_size, hidden_size, n_actions, agent_id): | ||||
|         super().__init__() | ||||
|         observation_size = np.prod(observation_size) | ||||
|         print(observation_size) | ||||
|         self.agent_id = agent_id | ||||
|         self.model = nn.Sequential( | ||||
|             nn.Flatten(), | ||||
|             nn.Linear(observation_size, hidden_size), | ||||
|             nn.ELU(), | ||||
|             nn.Linear(hidden_size, hidden_size), | ||||
|             nn.ELU(), | ||||
|             nn.Linear(hidden_size, hidden_size), | ||||
|             nn.ELU() | ||||
|         ) | ||||
|         self.action_head = nn.Linear(hidden_size, n_actions) | ||||
|         self.critic_head = nn.Linear(hidden_size, 1) | ||||
|  | ||||
|     def get_obs(self, t): | ||||
|         observation = self.get((f'env/{access_str(self.agent_id, OBS)}', t)) | ||||
|         return observation | ||||
|  | ||||
|     def forward(self, t, stochastic, **kwargs): | ||||
|         observation = self.get_obs(t) | ||||
|         features = self.model(observation) | ||||
|         scores = self.action_head(features) | ||||
|         probs = torch.softmax(scores, dim=-1) | ||||
|         critic = self.critic_head(features).squeeze(-1) | ||||
|         if stochastic: | ||||
|             action = torch.distributions.Categorical(probs).sample() | ||||
|         else: | ||||
|             action = probs.argmax(1) | ||||
|         self.set((f'{access_str(self.agent_id, "action")}', t), action) | ||||
|         self.set((f'{access_str(self.agent_id, "action_probs")}', t), probs) | ||||
|         self.set((f'{access_str(self.agent_id, "critic")}', t), critic) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     # Setup workspace | ||||
|     uid = time.time() | ||||
|     workspace = Workspace() | ||||
|     n_agents = 2 | ||||
|  | ||||
|     # load config | ||||
|     cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml') | ||||
|     add_env_props(cfg) | ||||
|     cfg['env'].update({'n_agents': n_agents}) | ||||
|  | ||||
|     # instantiate agent and env | ||||
|     env_agent = AutoResetGymMultiAgent( | ||||
|         get_class(cfg['env']), | ||||
|         get_arguments(cfg['env']), | ||||
|         n_envs=1 | ||||
|     ) | ||||
|  | ||||
|     a2c_agents = [instantiate_class({**cfg['agent'], | ||||
|                                      'agent_id': agent_id}) | ||||
|                   for agent_id in range(n_agents)] | ||||
|  | ||||
|     # combine agents | ||||
|     acquisition_agent = TemporalAgent(Agents(env_agent, *a2c_agents, CombineActionsAgent())) | ||||
|     acquisition_agent.seed(69) | ||||
|  | ||||
|     # optimizers & other parameters | ||||
|     cfg_optim = cfg['algorithm']['optimizer'] | ||||
|     optimizers = [get_class(cfg_optim)(a2c_agent.parameters(), **get_arguments(cfg_optim)) | ||||
|                   for a2c_agent in a2c_agents] | ||||
|     n_timesteps = cfg['algorithm']['n_timesteps'] | ||||
|  | ||||
|     # Decision making loop | ||||
|     best = -float('inf') | ||||
|     with tqdm(range(int(cfg['algorithm']['max_epochs'] / n_timesteps))) as pbar: | ||||
|         for epoch in pbar: | ||||
|             workspace.zero_grad() | ||||
|             if epoch > 0: | ||||
|                 workspace.copy_n_last_steps(1) | ||||
|                 acquisition_agent(workspace, t=1, n_steps=n_timesteps-1, stochastic=True) | ||||
|             else: | ||||
|                 acquisition_agent(workspace, t=0, n_steps=n_timesteps,  stochastic=True) | ||||
|  | ||||
|             for agent_id in range(n_agents): | ||||
|                 critic, done, action_probs, reward, action = workspace[ | ||||
|                     access_str(agent_id, 'critic'), | ||||
|                     "env/done", | ||||
|                     access_str(agent_id, 'action_probs'), | ||||
|                     access_str(agent_id, 'reward', 'env/'), | ||||
|                     access_str(agent_id, 'action') | ||||
|                 ] | ||||
|                 td = gae(critic, reward, done, 0.98, 0.25) | ||||
|                 td_error = td ** 2 | ||||
|                 critic_loss = td_error.mean() | ||||
|                 entropy_loss = Categorical(action_probs).entropy().mean() | ||||
|                 action_logp = _index(action_probs, action).log() | ||||
|                 a2c_loss = action_logp[:-1] * td.detach() | ||||
|                 a2c_loss = a2c_loss.mean() | ||||
|                 loss = ( | ||||
|                     -0.001 * entropy_loss | ||||
|                     + 1.0 * critic_loss | ||||
|                     - 0.1 * a2c_loss | ||||
|                 ) | ||||
|                 optimizer = optimizers[agent_id] | ||||
|                 optimizer.zero_grad() | ||||
|                 loss.backward() | ||||
|                 #torch.nn.utils.clip_grad_norm_(a2c_agents[agent_id].parameters(), .5) | ||||
|                 optimizer.step() | ||||
|  | ||||
|                 # Compute the cumulated reward on final_state | ||||
|                 rews = '' | ||||
|                 for agent_i in range(n_agents): | ||||
|                     creward = workspace['env/'+access_str(agent_i, CUMU_REWARD)] | ||||
|                     creward = creward[done] | ||||
|                     if creward.size()[0] > 0: | ||||
|                         rews += f'{AGENT_PREFIX}{agent_i}: {creward.mean().item():.2f}  |  ' | ||||
|                         """if cum_r > best: | ||||
|                             torch.save(a2c_agent.state_dict(), Path(__file__).parent / f'agent_{uid}.pt') | ||||
|                             best = cum_r""" | ||||
|                         pbar.set_description(rews, refresh=True) | ||||
|  | ||||
| @@ -1,27 +0,0 @@ | ||||
| agent: | ||||
|   classname:        studies.sat_mad.A2CAgent | ||||
|   observation_size: 4*5*5 | ||||
|   hidden_size:      128 | ||||
|   n_actions:        10 | ||||
|  | ||||
| env: | ||||
|   classname:          environments.factory.make | ||||
|   env_name:           "DirtyFactory-v0" | ||||
|   n_agents:           1 | ||||
|   pomdp_r:            2 | ||||
|   max_steps:          400 | ||||
|   stack_n_frames:     3 | ||||
|   individual_rewards: True | ||||
|  | ||||
| algorithm: | ||||
|   max_epochs:             1000000 | ||||
|   n_envs:                 1 | ||||
|   n_timesteps:            10 | ||||
|   discount_factor:        0.99 | ||||
|   entropy_coef:           0.01 | ||||
|   critic_coef:            1.0 | ||||
|   gae:                    0.25 | ||||
|   optimizer: | ||||
|     classname:            torch.optim.Adam | ||||
|     lr:                   0.0003 | ||||
|     weight_decay:         0.0 | ||||
							
								
								
									
										34
									
								
								studies/viz_policy.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								studies/viz_policy.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,34 @@ | ||||
| import pandas as pd | ||||
| from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC | ||||
| from pathlib import Path | ||||
| from algorithms.utils import load_yaml_file | ||||
| from tqdm import trange | ||||
| study = 'curious_study' | ||||
| study_root = Path(__file__).parent / study | ||||
|  | ||||
| #['L2NoAh_gru', 'L2NoCh_gru', 'nomix_gru']: | ||||
| render = True | ||||
| eval_eps = 3 | ||||
| for run in range(0, 5): | ||||
|     for name in ['basic_gru']:#['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru']: #['layernorm_gru', 'basic_gru', 'nonorm_gru', 'spectralnorm_gru']: | ||||
|         cfg = load_yaml_file(Path(__file__).parent / study / f'{name}.yaml') | ||||
|         p_root = Path(study_root / f'{name}#{run}') | ||||
|         dfs = [] | ||||
|         for i in trange(500): | ||||
|             path = p_root / f'checkpoint_{i}' | ||||
|  | ||||
|             snac = LoopSEAC(cfg) | ||||
|             snac.load_state_dict(path) | ||||
|             snac.eval() | ||||
|  | ||||
|             df = snac.eval_loop(render=render, n_episodes=eval_eps) | ||||
|             df['checkpoint'] = i | ||||
|             dfs.append(df) | ||||
|  | ||||
|         results = pd.concat(dfs) | ||||
|         results['run'] = run | ||||
|         results.to_csv(p_root / 'results.csv', index=False) | ||||
|  | ||||
| #sns.lineplot(data=results, x='checkpoint', y='reward', hue='agent', palette='husl') | ||||
|  | ||||
| #plt.savefig(f'{experiment_name}.png') | ||||
| @@ -1,39 +0,0 @@ | ||||
| from salina.agents import Agents, TemporalAgent | ||||
| import torch | ||||
| from salina import Workspace, get_arguments, get_class, instantiate_class | ||||
| from pathlib import Path | ||||
| from salina.agents.gyma import GymAgent | ||||
| import time | ||||
| from algorithms.utils import load_yaml_file, add_env_props | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     # Setup workspace | ||||
|     uid = time.time() | ||||
|     workspace = Workspace() | ||||
|     weights = Path('/Users/romue/PycharmProjects/EDYS/studies/agent_1636994369.145843.pt') | ||||
|  | ||||
|     cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml') | ||||
|     add_env_props(cfg) | ||||
|     cfg['env'].update({'n_agents': 2}) | ||||
|  | ||||
|     # instantiate agent and env | ||||
|     env_agent = GymAgent( | ||||
|         get_class(cfg['env']), | ||||
|         get_arguments(cfg['env']), | ||||
|         n_envs=1 | ||||
|     ) | ||||
|  | ||||
|     agents = [] | ||||
|     for _ in range(2): | ||||
|         a2c_agent = instantiate_class(cfg['agent']) | ||||
|         if weights: | ||||
|             a2c_agent.load_state_dict(torch.load(weights)) | ||||
|         agents.append(a2c_agent) | ||||
|  | ||||
|     # combine agents | ||||
|     acquisition_agent = TemporalAgent(Agents(env_agent, *agents)) | ||||
|     acquisition_agent.seed(42) | ||||
|  | ||||
|     acquisition_agent(workspace, t=0, n_steps=400, stochastic=False, save_render=True) | ||||
|  | ||||
|  | ||||
		Reference in New Issue
	
	Block a user
	 Robert Müller
					Robert Müller