mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 04:37:25 +01:00 
			
		
		
		
	firs commit for our new MARL algorithms library, contains working implementations of IAC, SNAC and SEAC
This commit is contained in:
		
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -702,3 +702,4 @@ $RECYCLE.BIN/ | |||||||
|  |  | ||||||
| # End of https://www.toptal.com/developers/gitignore/api/linux,unity,macos,python,windows,pycharm,notepadpp,visualstudiocode,latex | # End of https://www.toptal.com/developers/gitignore/api/linux,unity,macos,python,windows,pycharm,notepadpp,visualstudiocode,latex | ||||||
| /studies/e_1/ | /studies/e_1/ | ||||||
|  | /studies/curious_study/ | ||||||
|   | |||||||
| @@ -1,221 +0,0 @@ | |||||||
| from typing import NamedTuple, Union |  | ||||||
| from collections import deque, OrderedDict, defaultdict |  | ||||||
| import numpy as np |  | ||||||
| import random |  | ||||||
|  |  | ||||||
| import pandas as pd |  | ||||||
| import torch |  | ||||||
| import torch.nn as nn |  | ||||||
|  |  | ||||||
| from tqdm import trange |  | ||||||
|  |  | ||||||
| class Experience(NamedTuple): |  | ||||||
|     # can be use for a single (s_t, a, r s_{t+1}) tuple |  | ||||||
|     # or for a batch of tuples |  | ||||||
|     observation:      np.ndarray |  | ||||||
|     next_observation: np.ndarray |  | ||||||
|     action:           np.ndarray |  | ||||||
|     reward:           Union[float, np.ndarray] |  | ||||||
|     done  :           Union[bool, np.ndarray] |  | ||||||
|     episode:          int = -1 |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseLearner: |  | ||||||
|     def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1, stack_n_frames=1): |  | ||||||
|         assert train_every[0] in ['step', 'episode'], 'train_every[0] must be one of ["step", "episode"]' |  | ||||||
|         self.env = env |  | ||||||
|         self.n_agents = n_agents |  | ||||||
|         self.n_grad_steps = n_grad_steps |  | ||||||
|         self.train_every = train_every |  | ||||||
|         self.stack_n_frames = deque(maxlen=stack_n_frames) |  | ||||||
|         self.device = 'cpu' |  | ||||||
|         self.n_updates = 0 |  | ||||||
|         self.step = 0 |  | ||||||
|         self.episode_step = 0 |  | ||||||
|         self.episode = 0 |  | ||||||
|         self.running_reward = deque(maxlen=5) |  | ||||||
|  |  | ||||||
|     def to(self, device): |  | ||||||
|         self.device = device |  | ||||||
|         for attr, value in self.__dict__.items(): |  | ||||||
|             if isinstance(value, nn.Module): |  | ||||||
|                 value = value.to(self.device) |  | ||||||
|         return self |  | ||||||
|  |  | ||||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: |  | ||||||
|         pass |  | ||||||
|  |  | ||||||
|     def on_new_experience(self, experience): |  | ||||||
|         pass |  | ||||||
|  |  | ||||||
|     def on_step_end(self, n_steps): |  | ||||||
|         pass |  | ||||||
|  |  | ||||||
|     def on_episode_end(self, n_steps): |  | ||||||
|         pass |  | ||||||
|  |  | ||||||
|     def on_all_done(self): |  | ||||||
|         pass |  | ||||||
|  |  | ||||||
|     def train(self): |  | ||||||
|         pass |  | ||||||
|  |  | ||||||
|     def reward(self, r): |  | ||||||
|         return r |  | ||||||
|  |  | ||||||
|     def learn(self, n_steps): |  | ||||||
|         train_type, train_freq = self.train_every |  | ||||||
|         while self.step < n_steps: |  | ||||||
|             obs, done = self.env.reset(), False |  | ||||||
|             total_reward = 0 |  | ||||||
|             self.episode_step = 0 |  | ||||||
|             while not done: |  | ||||||
|  |  | ||||||
|                 action = self.get_action(obs) |  | ||||||
|  |  | ||||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) |  | ||||||
|  |  | ||||||
|                 experience = Experience(observation=obs, next_observation=next_obs, |  | ||||||
|                                         action=action, reward=self.reward(reward), |  | ||||||
|                                         done=done, episode=self.episode)  # do we really need to copy? |  | ||||||
|                 self.on_new_experience(experience) |  | ||||||
|                 # end of step routine |  | ||||||
|                 obs = next_obs |  | ||||||
|                 total_reward += reward |  | ||||||
|                 self.step += 1 |  | ||||||
|                 self.episode_step += 1 |  | ||||||
|                 self.on_step_end(n_steps) |  | ||||||
|                 if train_type == 'step' and (self.step % train_freq == 0): |  | ||||||
|                     self.train() |  | ||||||
|                     self.n_updates += 1 |  | ||||||
|             self.on_episode_end(n_steps) |  | ||||||
|             if train_type == 'episode' and (self.episode % train_freq == 0): |  | ||||||
|                 self.train() |  | ||||||
|                 self.n_updates += 1 |  | ||||||
|  |  | ||||||
|             self.running_reward.append(total_reward) |  | ||||||
|             self.episode += 1 |  | ||||||
|             try: |  | ||||||
|                 if self.step % 100 == 0: |  | ||||||
|                     print( |  | ||||||
|                         f'Step: {self.step} ({(self.step / n_steps) * 100:.2f}%)\tRunning reward: {sum(list(self.running_reward)) / len(self.running_reward):.2f}\t' |  | ||||||
|                         f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss)) / len(self.running_loss):.4f}\tUpdates:{self.n_updates}') |  | ||||||
|             except Exception as e: |  | ||||||
|                 pass |  | ||||||
|         self.on_all_done() |  | ||||||
|  |  | ||||||
|     def evaluate(self, n_episodes=100, render=False): |  | ||||||
|         with torch.no_grad(): |  | ||||||
|             data = [] |  | ||||||
|             for eval_i in trange(n_episodes): |  | ||||||
|                 obs, done = self.env.reset(), False |  | ||||||
|                 while not done: |  | ||||||
|                     action = self.get_action(obs) |  | ||||||
|                     next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) |  | ||||||
|                     if render: self.env.render() |  | ||||||
|                     obs = next_obs  # srsly i'm so stupid |  | ||||||
|                     info.update({'reward': reward, 'eval_episode': eval_i}) |  | ||||||
|                     data.append(info) |  | ||||||
|         return pd.DataFrame(data).fillna(0) |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseBuffer: |  | ||||||
|     def __init__(self, size: int): |  | ||||||
|         self.size = size |  | ||||||
|         self.experience = deque(maxlen=size) |  | ||||||
|  |  | ||||||
|     def __len__(self): |  | ||||||
|         return len(self.experience) |  | ||||||
|  |  | ||||||
|     def add(self, exp: Experience): |  | ||||||
|         self.experience.append(exp) |  | ||||||
|  |  | ||||||
|     def sample(self, k, cer=4): |  | ||||||
|         sample = random.choices(self.experience, k=k-cer) |  | ||||||
|         for i in range(cer): sample += [self.experience[-i]] |  | ||||||
|         observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float() |  | ||||||
|         next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float() |  | ||||||
|         actions = torch.tensor([e.action for e in sample]).long() |  | ||||||
|         rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1) |  | ||||||
|         dones = torch.tensor([e.done for e in sample]).float().view(-1, 1) |  | ||||||
|         #print(observations.shape, next_observations.shape, actions.shape, rewards.shape, dones.shape) |  | ||||||
|         return Experience(observations, next_observations, actions, rewards, dones) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class TrajectoryBuffer(BaseBuffer): |  | ||||||
|     def __init__(self, size): |  | ||||||
|         super(TrajectoryBuffer, self).__init__(size) |  | ||||||
|         self.experience = defaultdict(list) |  | ||||||
|  |  | ||||||
|     def add(self, exp: Experience): |  | ||||||
|         self.experience[exp.episode].append(exp) |  | ||||||
|         if len(self.experience) > self.size: |  | ||||||
|             oldest_traj_key = list(sorted(self.experience.keys()))[0] |  | ||||||
|             del self.experience[oldest_traj_key] |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def soft_update(local_model, target_model, tau): |  | ||||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb |  | ||||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): |  | ||||||
|         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'): |  | ||||||
|     activations = {'elu': nn.ELU, 'relu': nn.ReLU, 'sigmoid': nn.Sigmoid, |  | ||||||
|                   'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh, |  | ||||||
|                   'gelu': nn.GELU, 'identity': nn.Identity} |  | ||||||
|     layers = [('Flatten', nn.Flatten())] if flatten else [] |  | ||||||
|     for i in range(1, len(dims)): |  | ||||||
|         layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i]))) |  | ||||||
|         activation_str = activation if i != len(dims)-1 else activation_last |  | ||||||
|         layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]())) |  | ||||||
|     return nn.Sequential(OrderedDict(layers)) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseDQN(nn.Module): |  | ||||||
|     def __init__(self, dims=[3*5*5, 64, 64, 9]): |  | ||||||
|         super(BaseDQN, self).__init__() |  | ||||||
|         self.net = mlp_maker(dims, flatten=True) |  | ||||||
|  |  | ||||||
|     @torch.no_grad() |  | ||||||
|     def act(self, x) -> np.ndarray: |  | ||||||
|         action = self.forward(x).max(-1)[1].numpy() |  | ||||||
|         return action |  | ||||||
|  |  | ||||||
|     def forward(self, x): |  | ||||||
|         return self.net(x) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseDDQN(BaseDQN): |  | ||||||
|     def __init__(self, |  | ||||||
|                  backbone_dims=[3*5*5, 64, 64], |  | ||||||
|                  value_dims=[64, 1], |  | ||||||
|                  advantage_dims=[64, 9], |  | ||||||
|                  activation='elu'): |  | ||||||
|         super(BaseDDQN, self).__init__(backbone_dims) |  | ||||||
|         self.net = mlp_maker(backbone_dims, activation=activation, flatten=True) |  | ||||||
|         self.value_head         =  mlp_maker(value_dims) |  | ||||||
|         self.advantage_head     =  mlp_maker(advantage_dims) |  | ||||||
|  |  | ||||||
|     def forward(self, x): |  | ||||||
|         features = self.net(x) |  | ||||||
|         advantages = self.advantage_head(features) |  | ||||||
|         values = self.value_head(features) |  | ||||||
|         return values + (advantages - advantages.mean()) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseICM(nn.Module): |  | ||||||
|     def __init__(self, backbone_dims=[2*3*5*5, 64, 64], head_dims=[2*64, 64, 9]): |  | ||||||
|         super(BaseICM, self).__init__() |  | ||||||
|         self.backbone = mlp_maker(backbone_dims, flatten=True, activation_last='relu', activation='relu') |  | ||||||
|         self.icm = mlp_maker(head_dims) |  | ||||||
|         self.ce = nn.CrossEntropyLoss() |  | ||||||
|  |  | ||||||
|     def forward(self, s0, s1, a): |  | ||||||
|         phi_s0 = self.backbone(s0) |  | ||||||
|         phi_s1 = self.backbone(s1) |  | ||||||
|         cat = torch.cat((phi_s0, phi_s1), dim=1) |  | ||||||
|         a_prime = torch.softmax(self.icm(cat), dim=-1) |  | ||||||
|         ce = self.ce(a_prime, a) |  | ||||||
|         return dict(prediction=a_prime, loss=ce) |  | ||||||
| @@ -1,77 +0,0 @@ | |||||||
| import numpy as np |  | ||||||
| import torch |  | ||||||
| import torch.nn.functional as F |  | ||||||
| from algorithms.q_learner import QLearner |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class MQLearner(QLearner): |  | ||||||
|     # Munchhausen Q-Learning |  | ||||||
|     def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs): |  | ||||||
|         super(MQLearner, self).__init__(*args, **kwargs) |  | ||||||
|         assert self.n_agents == 1, 'M-DQN currently only supports single agent training' |  | ||||||
|         self.temperature = temperature |  | ||||||
|         self.alpha = alpha |  | ||||||
|         self.clip0 = clip_l0 |  | ||||||
|  |  | ||||||
|     def tau_ln_pi(self, qs): |  | ||||||
|         # computes log(softmax(qs/temperature)) |  | ||||||
|         # Custom log-sum-exp trick from page 18 to compute the log-policy terms |  | ||||||
|         v_k = qs.max(-1)[0].unsqueeze(-1) |  | ||||||
|         advantage = qs - v_k |  | ||||||
|         logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1) |  | ||||||
|         tau_ln_pi = advantage - self.temperature * logsum |  | ||||||
|         return tau_ln_pi |  | ||||||
|  |  | ||||||
|     def train(self): |  | ||||||
|         if len(self.buffer) < self.batch_size: return |  | ||||||
|         for _ in range(self.n_grad_steps): |  | ||||||
|  |  | ||||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1]) |  | ||||||
|  |  | ||||||
|             with torch.no_grad(): |  | ||||||
|                 q_target_next = self.target_q_net(experience.next_observation) |  | ||||||
|                 tau_log_pi_next = self.tau_ln_pi(q_target_next) |  | ||||||
|  |  | ||||||
|                 q_k_targets = self.target_q_net(experience.observation) |  | ||||||
|                 log_pi = self.tau_ln_pi(q_k_targets) |  | ||||||
|  |  | ||||||
|                 pi_target = F.softmax(q_target_next / self.temperature, dim=-1) |  | ||||||
|                 q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1) |  | ||||||
|  |  | ||||||
|                 munchausen_addon = log_pi.gather(-1, experience.action) |  | ||||||
|  |  | ||||||
|                 munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0)) |  | ||||||
|  |  | ||||||
|                 # Compute Q targets for current states |  | ||||||
|                 m_q_target = munchausen_reward + q_target |  | ||||||
|  |  | ||||||
|             # Get expected Q values from local model |  | ||||||
|             q_k = self.q_net(experience.observation) |  | ||||||
|             pred_q = q_k.gather(-1, experience.action) |  | ||||||
|  |  | ||||||
|             # Compute loss |  | ||||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2)) |  | ||||||
|             self._backprop_loss(loss) |  | ||||||
|  |  | ||||||
| from tqdm import trange |  | ||||||
| from collections import deque |  | ||||||
| class MQICMLearner(MQLearner): |  | ||||||
|     def __init__(self, *args, icm, **kwargs): |  | ||||||
|         super(MQICMLearner, self).__init__(*args, **kwargs) |  | ||||||
|         self.icm = icm |  | ||||||
|         self.icm_optimizer = torch.optim.AdamW(self.icm.parameters()) |  | ||||||
|         self.normalize_reward = deque(maxlen=1000) |  | ||||||
|  |  | ||||||
|     def on_all_done(self): |  | ||||||
|         from collections import deque |  | ||||||
|         losses = deque(maxlen=100) |  | ||||||
|         for b in trange(10000): |  | ||||||
|             batch = self.buffer.sample(128, 0) |  | ||||||
|             s0, s1, a = batch.observation,  batch.next_observation, batch.action |  | ||||||
|             loss = self.icm(s0, s1, a.squeeze())['loss'] |  | ||||||
|             self.icm_optimizer.zero_grad() |  | ||||||
|             loss.backward() |  | ||||||
|             self.icm_optimizer.step() |  | ||||||
|             losses.append(loss.item()) |  | ||||||
|             if b%100 == 0: |  | ||||||
|                 print(np.mean(losses)) |  | ||||||
							
								
								
									
										4
									
								
								algorithms/marl/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								algorithms/marl/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | |||||||
|  | from algorithms.marl.base_ac import BaseActorCritic | ||||||
|  | from algorithms.marl.iac import LoopIAC | ||||||
|  | from algorithms.marl.snac import LoopSNAC | ||||||
|  | from algorithms.marl.seac import LoopSEAC | ||||||
							
								
								
									
										176
									
								
								algorithms/marl/base_ac.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								algorithms/marl/base_ac.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,176 @@ | |||||||
|  | import torch | ||||||
|  | from typing import Union, List | ||||||
|  | import numpy as np | ||||||
|  | from torch.distributions import Categorical | ||||||
|  | from algorithms.marl.memory import MARLActorCriticMemory | ||||||
|  | from algorithms.utils import add_env_props, instantiate_class | ||||||
|  | from pathlib import Path | ||||||
|  | import pandas as pd | ||||||
|  | from collections import deque | ||||||
|  | ListOrTensor = Union[List, torch.Tensor] | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class BaseActorCritic: | ||||||
|  |     def __init__(self, cfg): | ||||||
|  |         add_env_props(cfg) | ||||||
|  |         self.__training = True | ||||||
|  |         self.cfg = cfg | ||||||
|  |         self.n_agents = cfg['env']['n_agents'] | ||||||
|  |         self.setup() | ||||||
|  |  | ||||||
|  |     def setup(self): | ||||||
|  |         self.net = instantiate_class(self.cfg['agent']) | ||||||
|  |         self.optimizer = torch.optim.RMSprop(self.net.parameters(), lr=3e-4, eps=1e-5) | ||||||
|  |  | ||||||
|  |     @classmethod | ||||||
|  |     def _as_torch(cls, x): | ||||||
|  |         if isinstance(x, np.ndarray): | ||||||
|  |             return torch.from_numpy(x) | ||||||
|  |         elif isinstance(x, List): | ||||||
|  |             return torch.tensor(x) | ||||||
|  |         elif isinstance(x, (int, float)): | ||||||
|  |             return torch.tensor([x]) | ||||||
|  |         return x | ||||||
|  |  | ||||||
|  |     def train(self): | ||||||
|  |         self.__training = False | ||||||
|  |         networks = [self.net] if not isinstance(self.net, List) else self.net | ||||||
|  |         for net in networks: | ||||||
|  |             net.train() | ||||||
|  |  | ||||||
|  |     def eval(self): | ||||||
|  |         self.__training = False | ||||||
|  |         networks = [self.net] if not isinstance(self.net, List) else self.net | ||||||
|  |         for net in networks: | ||||||
|  |             net.eval() | ||||||
|  |  | ||||||
|  |     def load_state_dict(self, path: Path): | ||||||
|  |         pass | ||||||
|  |  | ||||||
|  |     def get_actions(self, out) -> ListOrTensor: | ||||||
|  |         actions = [Categorical(logits=logits).sample().item() for logits in out['logits']] | ||||||
|  |         return actions | ||||||
|  |  | ||||||
|  |     def init_hidden(self) -> dict[ListOrTensor]: | ||||||
|  |         pass | ||||||
|  |  | ||||||
|  |     def forward(self, | ||||||
|  |                 observations:  ListOrTensor, | ||||||
|  |                 actions:       ListOrTensor, | ||||||
|  |                 hidden_actor:  ListOrTensor, | ||||||
|  |                 hidden_critic: ListOrTensor | ||||||
|  |                 ): | ||||||
|  |         pass | ||||||
|  |  | ||||||
|  |  | ||||||
|  |     @torch.no_grad() | ||||||
|  |     def train_loop(self, checkpointer=None): | ||||||
|  |         env = instantiate_class(self.cfg['env']) | ||||||
|  |         n_steps, max_steps = [self.cfg['algorithm'][k] for k in ['n_steps', 'max_steps']] | ||||||
|  |         global_steps = 0 | ||||||
|  |         reward_queue = deque(maxlen=2000) | ||||||
|  |         while global_steps < max_steps: | ||||||
|  |             tm = MARLActorCriticMemory(self.n_agents) | ||||||
|  |             obs = env.reset() | ||||||
|  |             last_hiddens        = self.init_hidden() | ||||||
|  |             last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents | ||||||
|  |             done, rew_log       = [False]    * self.n_agents, 0 | ||||||
|  |             tm.add(action=last_action, **last_hiddens) | ||||||
|  |  | ||||||
|  |             while not all(done): | ||||||
|  |  | ||||||
|  |                 out = self.forward(obs, last_action, **last_hiddens) | ||||||
|  |                 action = self.get_actions(out) | ||||||
|  |                 next_obs, reward, done, info = env.step(action) | ||||||
|  |                 next_obs = next_obs | ||||||
|  |                 if isinstance(done, bool): done = [done] * self.n_agents | ||||||
|  |  | ||||||
|  |                 tm.add(observation=obs, action=action, reward=reward, done=done) | ||||||
|  |                 obs = next_obs | ||||||
|  |                 last_action = action | ||||||
|  |                 last_hiddens = dict(hidden_actor=out.get('hidden_actor', None), | ||||||
|  |                                     hidden_critic=out.get('hidden_critic', None) | ||||||
|  |                                     ) | ||||||
|  |  | ||||||
|  |                 if len(tm) >= n_steps or all(done): | ||||||
|  |                     tm.add(observation=next_obs) | ||||||
|  |                     if self.__training: | ||||||
|  |                         with torch.inference_mode(False): | ||||||
|  |                             self.learn(tm) | ||||||
|  |                     tm.reset() | ||||||
|  |                     tm.add(action=last_action, **last_hiddens) | ||||||
|  |                 global_steps += 1 | ||||||
|  |                 rew_log += sum(reward) | ||||||
|  |                 reward_queue.extend(reward) | ||||||
|  |  | ||||||
|  |                 if checkpointer is not None: | ||||||
|  |                     checkpointer.step([ | ||||||
|  |                         (f'agent#{i}', agent) | ||||||
|  |                         for i, agent in enumerate([self.net] if not isinstance(self.net, List) else self.net) | ||||||
|  |                     ]) | ||||||
|  |  | ||||||
|  |                 if global_steps >= max_steps: break | ||||||
|  |             print(f'reward at step: {global_steps} = {rew_log}') | ||||||
|  |  | ||||||
|  |     @torch.inference_mode(True) | ||||||
|  |     def eval_loop(self, n_episodes, render=False): | ||||||
|  |         env = instantiate_class(self.cfg['env']) | ||||||
|  |         episode, results = 0, [] | ||||||
|  |         while episode < n_episodes: | ||||||
|  |             obs = env.reset() | ||||||
|  |             last_hiddens           = self.init_hidden() | ||||||
|  |             last_action, reward    = [-1] * self.n_agents, [0.] * self.n_agents | ||||||
|  |             done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents) | ||||||
|  |             while not all(done): | ||||||
|  |                 if render: env.render() | ||||||
|  |  | ||||||
|  |                 out    = self.forward(obs, last_action, **last_hiddens) | ||||||
|  |                 action = self.get_actions(out) | ||||||
|  |                 next_obs, reward, done, info = env.step(action) | ||||||
|  |  | ||||||
|  |                 if isinstance(done, bool): done = [done] * obs.shape[0] | ||||||
|  |                 obs = next_obs | ||||||
|  |                 last_action = action | ||||||
|  |                 last_hiddens = dict(hidden_actor=out.get('hidden_actor',   None), | ||||||
|  |                                     hidden_critic=out.get('hidden_critic', None) | ||||||
|  |                                     ) | ||||||
|  |                 eps_rew += torch.tensor(reward) | ||||||
|  |             results.append(eps_rew.tolist() + [sum(eps_rew).item()] + [episode]) | ||||||
|  |             episode += 1 | ||||||
|  |         agent_columns = [f'agent#{i}' for i in range(self.cfg['env']['n_agents'])] | ||||||
|  |         results = pd.DataFrame(results, columns=agent_columns + ['sum', 'episode']) | ||||||
|  |         results = pd.melt(results, id_vars=['episode'], value_vars=agent_columns + ['sum'], value_name='reward', var_name='agent') | ||||||
|  |         return results | ||||||
|  |  | ||||||
|  |     @staticmethod | ||||||
|  |     def compute_advantages(critic, reward, done, gamma): | ||||||
|  |         return (reward + gamma * (1.0 - done) * critic[:, 1:].detach()) - critic[:, :-1] | ||||||
|  |  | ||||||
|  |     def actor_critic(self, tm, network, gamma, entropy_coef, vf_coef, **kwargs): | ||||||
|  |         obs, actions, done, reward = tm.observation, tm.action, tm.done, tm.reward | ||||||
|  |  | ||||||
|  |         out = network(obs, actions, tm.hidden_actor, tm.hidden_critic) | ||||||
|  |         logits = out['logits'][:, :-1]  # last one only needed for v_{t+1} | ||||||
|  |         critic = out['critic'] | ||||||
|  |  | ||||||
|  |         entropy_loss = Categorical(logits=logits).entropy().mean(-1) | ||||||
|  |         advantages = self.compute_advantages(critic, reward, done, gamma) | ||||||
|  |         value_loss = advantages.pow(2).mean(-1)  # n_agent | ||||||
|  |  | ||||||
|  |         # policy loss | ||||||
|  |         log_ap = torch.log_softmax(logits, -1) | ||||||
|  |         log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze() | ||||||
|  |         a2c_loss = -(advantages.detach() * log_ap).mean(-1) | ||||||
|  |         # weighted loss | ||||||
|  |         loss = a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss | ||||||
|  |  | ||||||
|  |         return loss.mean() | ||||||
|  |  | ||||||
|  |     def learn(self, tm: MARLActorCriticMemory, **kwargs): | ||||||
|  |         loss = self.actor_critic(tm, self.net, **self.cfg['algorithm'], **kwargs) | ||||||
|  |         # remove next_obs, will be added in next iter | ||||||
|  |         self.optimizer.zero_grad() | ||||||
|  |         loss.backward() | ||||||
|  |         torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5) | ||||||
|  |         self.optimizer.step() | ||||||
|  |  | ||||||
							
								
								
									
										24
									
								
								algorithms/marl/example_config.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								algorithms/marl/example_config.yaml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | |||||||
|  | agent: | ||||||
|  |   classname:           algorithms.marl.networks.RecurrentAC | ||||||
|  |   n_agents:            2 | ||||||
|  |   obs_emb_size:        96 | ||||||
|  |   action_emb_size:     16 | ||||||
|  |   hidden_size_actor:   64 | ||||||
|  |   hidden_size_critic:  64 | ||||||
|  |   use_agent_embedding: False | ||||||
|  | env: | ||||||
|  |   classname:          environments.factory.make | ||||||
|  |   env_name:           "DirtyFactory-v0" | ||||||
|  |   n_agents:           2 | ||||||
|  |   max_steps:          250 | ||||||
|  |   pomdp_r:            2 | ||||||
|  |   stack_n_frames:     0 | ||||||
|  |   individual_rewards: True | ||||||
|  | method:               algorithms.marl.LoopSEAC | ||||||
|  | algorithm: | ||||||
|  |   gamma:              0.99 | ||||||
|  |   entropy_coef:       0.01 | ||||||
|  |   vf_coef:            0.5 | ||||||
|  |   n_steps:            5 | ||||||
|  |   max_steps:          1000000 | ||||||
|  |  | ||||||
							
								
								
									
										58
									
								
								algorithms/marl/iac.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								algorithms/marl/iac.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,58 @@ | |||||||
|  | import torch | ||||||
|  | from algorithms.marl.base_ac import BaseActorCritic | ||||||
|  | from algorithms.utils import instantiate_class | ||||||
|  | from pathlib import Path | ||||||
|  | from natsort import natsorted | ||||||
|  | from algorithms.marl.memory import MARLActorCriticMemory | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class LoopIAC(BaseActorCritic): | ||||||
|  |  | ||||||
|  |     def __init__(self, cfg): | ||||||
|  |         super(LoopIAC, self).__init__(cfg) | ||||||
|  |  | ||||||
|  |     def setup(self): | ||||||
|  |         self.net = [ | ||||||
|  |             instantiate_class(self.cfg['agent']) for _ in range(self.n_agents) | ||||||
|  |         ] | ||||||
|  |         self.optimizer = [ | ||||||
|  |             torch.optim.RMSprop(self.net[ag_i].parameters(), lr=3e-4, eps=1e-5) for ag_i in range(self.n_agents) | ||||||
|  |         ] | ||||||
|  |  | ||||||
|  |     def load_state_dict(self, path: Path): | ||||||
|  |         paths = natsorted(list(path.glob('*.pt'))) | ||||||
|  |         print(list(paths)) | ||||||
|  |         for path, net in zip(paths, self.net): | ||||||
|  |             net.load_state_dict(torch.load(path)) | ||||||
|  |  | ||||||
|  |     @staticmethod | ||||||
|  |     def merge_dicts(ds):  # todo could be recursive for more than 1 hierarchy | ||||||
|  |         d = {} | ||||||
|  |         for k in ds[0].keys(): | ||||||
|  |             d[k] = [d[k] for d in ds] | ||||||
|  |         return d | ||||||
|  |  | ||||||
|  |     def init_hidden(self): | ||||||
|  |         ha  = [net.init_hidden_actor()  for net in self.net] | ||||||
|  |         hc  = [net.init_hidden_critic() for net in self.net] | ||||||
|  |         return dict(hidden_actor=ha, hidden_critic=hc) | ||||||
|  |  | ||||||
|  |     def forward(self, observations, actions, hidden_actor, hidden_critic): | ||||||
|  |         outputs = [ | ||||||
|  |             net( | ||||||
|  |                 self._as_torch(observations[ag_i]).unsqueeze(0).unsqueeze(0),  # agents x time | ||||||
|  |                 self._as_torch(actions[ag_i]).unsqueeze(0), | ||||||
|  |                 hidden_actor[ag_i], | ||||||
|  |                 hidden_critic[ag_i] | ||||||
|  |                 ) for ag_i, net in enumerate(self.net) | ||||||
|  |         ] | ||||||
|  |         return self.merge_dicts(outputs) | ||||||
|  |  | ||||||
|  |     def learn(self, tms: MARLActorCriticMemory, **kwargs): | ||||||
|  |         for ag_i in range(self.n_agents): | ||||||
|  |             tm, net = tms(ag_i), self.net[ag_i] | ||||||
|  |             loss = self.actor_critic(tm, net, **self.cfg['algorithm'], **kwargs) | ||||||
|  |             self.optimizer[ag_i].zero_grad() | ||||||
|  |             loss.backward() | ||||||
|  |             torch.nn.utils.clip_grad_norm_(net.parameters(), 0.5) | ||||||
|  |             self.optimizer[ag_i].step() | ||||||
							
								
								
									
										131
									
								
								algorithms/marl/memory.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										131
									
								
								algorithms/marl/memory.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,131 @@ | |||||||
|  | import torch | ||||||
|  | from typing import Union, List | ||||||
|  | from torch import Tensor | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class ActorCriticMemory(object): | ||||||
|  |     def __init__(self): | ||||||
|  |         self.reset() | ||||||
|  |  | ||||||
|  |     def reset(self): | ||||||
|  |         self.__states  = [] | ||||||
|  |         self.__actions = [] | ||||||
|  |         self.__rewards = [] | ||||||
|  |         self.__dones   = [] | ||||||
|  |         self.__hiddens_actor = [] | ||||||
|  |         self.__hiddens_critic = [] | ||||||
|  |  | ||||||
|  |     def __len__(self): | ||||||
|  |         return len(self.__states) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def observation(self): | ||||||
|  |         return torch.stack(self.__states, 0).unsqueeze(0)      # 1 x timesteps x hidden dim | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def hidden_actor(self): | ||||||
|  |         if len(self.__hiddens_actor) == 1: | ||||||
|  |             return self.__hiddens_actor[0] | ||||||
|  |         return torch.stack(self.__hiddens_actor, 0)  # layers x timesteps x hidden dim | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def hidden_critic(self): | ||||||
|  |         if len(self.__hiddens_critic) == 1: | ||||||
|  |             return self.__hiddens_critic[0] | ||||||
|  |         return torch.stack(self.__hiddens_critic, 0)  # layers x timesteps x hidden dim | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def reward(self): | ||||||
|  |         return  torch.tensor(self.__rewards).float().unsqueeze(0)  # 1 x timesteps | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def action(self): | ||||||
|  |         return torch.tensor(self.__actions).long().unsqueeze(0)  # 1 x timesteps+1 | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def done(self): | ||||||
|  |         return torch.tensor(self.__dones).float().unsqueeze(0)  # 1 x timesteps | ||||||
|  |  | ||||||
|  |     def add_observation(self, state:  Union[Tensor, np.ndarray]): | ||||||
|  |         self.__states.append(state    if isinstance(state, Tensor) else torch.from_numpy(state)) | ||||||
|  |  | ||||||
|  |     def add_hidden_actor(self, hidden: Tensor): | ||||||
|  |         # 1x layers x hidden dim | ||||||
|  |         if len(hidden.shape) < 3: hidden = hidden.unsqueeze(0) | ||||||
|  |         self.__hiddens_actor.append(hidden) | ||||||
|  |  | ||||||
|  |     def add_hidden_critic(self, hidden: Tensor): | ||||||
|  |         # 1x layers x hidden dim | ||||||
|  |         if len(hidden.shape) < 3: hidden = hidden.unsqueeze(0) | ||||||
|  |         self.__hiddens_critic.append(hidden) | ||||||
|  |  | ||||||
|  |     def add_action(self, action: int): | ||||||
|  |         self.__actions.append(action) | ||||||
|  |  | ||||||
|  |     def add_reward(self, reward: float): | ||||||
|  |         self.__rewards.append(reward) | ||||||
|  |  | ||||||
|  |     def add_done(self, done:   bool): | ||||||
|  |         self.__dones.append(done) | ||||||
|  |  | ||||||
|  |     def add(self, **kwargs): | ||||||
|  |         for k, v in kwargs.items(): | ||||||
|  |             func = getattr(ActorCriticMemory, f'add_{k}') | ||||||
|  |             func(self, v) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class MARLActorCriticMemory(object): | ||||||
|  |     def __init__(self, n_agents): | ||||||
|  |         self.n_agents = n_agents | ||||||
|  |         self.memories = [ | ||||||
|  |             ActorCriticMemory() for _ in range(n_agents) | ||||||
|  |         ] | ||||||
|  |  | ||||||
|  |     def __call__(self, agent_i): | ||||||
|  |         return self.memories[agent_i] | ||||||
|  |  | ||||||
|  |     def __len__(self): | ||||||
|  |         return len(self.memories[0])  # todo add assertion check! | ||||||
|  |  | ||||||
|  |     def reset(self): | ||||||
|  |         for mem in self.memories: | ||||||
|  |             mem.reset() | ||||||
|  |  | ||||||
|  |     def add(self, **kwargs): | ||||||
|  |         # todo try catch - print all possible functions | ||||||
|  |         for agent_i in range(self.n_agents): | ||||||
|  |             for k, v in kwargs.items(): | ||||||
|  |                 func = getattr(ActorCriticMemory, f'add_{k}') | ||||||
|  |                 func(self.memories[agent_i], v[agent_i]) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def observation(self): | ||||||
|  |         all_obs = [mem.observation for mem in self.memories] | ||||||
|  |         return torch.cat(all_obs, 0)  # agents x timesteps+1 x ... | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def action(self): | ||||||
|  |         all_actions = [mem.action for mem in self.memories] | ||||||
|  |         return torch.cat(all_actions, 0)  # agents x timesteps+1 x ... | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def done(self): | ||||||
|  |         all_dones = [mem.done for mem in self.memories] | ||||||
|  |         return torch.cat(all_dones, 0).float()  # agents x timesteps x ... | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def reward(self): | ||||||
|  |         all_rewards = [mem.reward for mem in self.memories] | ||||||
|  |         return torch.cat(all_rewards, 0).float()  # agents x timesteps x ... | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def hidden_actor(self): | ||||||
|  |         all_ha = [mem.hidden_actor for mem in self.memories] | ||||||
|  |         return torch.cat(all_ha, 0)  # agents x layers x  x timesteps x hidden dim | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def hidden_critic(self): | ||||||
|  |         all_hc = [mem.hidden_critic for mem in self.memories] | ||||||
|  |         return torch.cat(all_hc, 0)  # agents  x layers x timesteps x hidden dim | ||||||
|  |  | ||||||
							
								
								
									
										91
									
								
								algorithms/marl/networks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										91
									
								
								algorithms/marl/networks.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,91 @@ | |||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | import numpy as np | ||||||
|  | import torch.nn.functional as F | ||||||
|  | from torch.nn.utils import spectral_norm | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class RecurrentAC(nn.Module): | ||||||
|  |     def __init__(self, observation_size, n_actions, obs_emb_size, | ||||||
|  |                  action_emb_size, hidden_size_actor, hidden_size_critic, | ||||||
|  |                  n_agents, use_agent_embedding=True): | ||||||
|  |         super(RecurrentAC, self).__init__() | ||||||
|  |         observation_size = np.prod(observation_size) | ||||||
|  |         self.n_layers = 1 | ||||||
|  |         self.use_agent_embedding = use_agent_embedding | ||||||
|  |         self.hidden_size_actor = hidden_size_actor | ||||||
|  |         self.hidden_size_critic = hidden_size_critic | ||||||
|  |         self.action_emb_size    = action_emb_size | ||||||
|  |         self.obs_proj   = nn.Linear(observation_size, obs_emb_size) | ||||||
|  |         self.action_emb =  nn.Embedding(n_actions+1, action_emb_size, padding_idx=0) | ||||||
|  |         self.agent_emb  =  nn.Embedding(n_agents, action_emb_size) | ||||||
|  |         mix_in_size = obs_emb_size+action_emb_size if not use_agent_embedding else obs_emb_size+n_agents*action_emb_size | ||||||
|  |         self.mix = nn.Sequential(nn.Tanh(), | ||||||
|  |                                  nn.Linear(mix_in_size, obs_emb_size), | ||||||
|  |                                  nn.Tanh(), | ||||||
|  |                                  nn.Linear(obs_emb_size, obs_emb_size) | ||||||
|  |                                  ) | ||||||
|  |         self.gru_actor   = nn.GRU(obs_emb_size, hidden_size_actor, batch_first=True, num_layers=self.n_layers) | ||||||
|  |         self.gru_critic  = nn.GRU(obs_emb_size, hidden_size_critic, batch_first=True, num_layers=self.n_layers) | ||||||
|  |         self.action_head = nn.Sequential( | ||||||
|  |             spectral_norm(nn.Linear(hidden_size_actor, hidden_size_actor)), | ||||||
|  |             nn.Tanh(), | ||||||
|  |             nn.Linear(hidden_size_actor, n_actions) | ||||||
|  |         ) | ||||||
|  |         self.critic_head = nn.Sequential( | ||||||
|  |             nn.Linear(hidden_size_critic, hidden_size_critic), | ||||||
|  |             nn.Tanh(), | ||||||
|  |             nn.Linear(hidden_size_critic, 1) | ||||||
|  |         ) | ||||||
|  |         #self.action_head[-1].weight.data.uniform_(-3e-3, 3e-3) | ||||||
|  |         #self.action_head[-1].bias.data.uniform_(-3e-3, 3e-3) | ||||||
|  |  | ||||||
|  |     def init_hidden_actor(self): | ||||||
|  |         return torch.zeros(1, self.n_layers, self.hidden_size_actor) | ||||||
|  |  | ||||||
|  |     def init_hidden_critic(self): | ||||||
|  |         return torch.zeros(1, self.n_layers, self.hidden_size_critic) | ||||||
|  |  | ||||||
|  |     def forward(self, observations, actions, hidden_actor=None, hidden_critic=None): | ||||||
|  |         n_agents, t, *_ = observations.shape | ||||||
|  |         obs_emb    = self.obs_proj(observations.view(n_agents, t, -1).float()) | ||||||
|  |         action_emb = self.action_emb(actions+1)  # shift by one due to padding idx | ||||||
|  |         agent_emb  = self.agent_emb( | ||||||
|  |             torch.cat([torch.arange(0, n_agents, 1).view(-1, 1)]*t, 1) | ||||||
|  |         ) | ||||||
|  |         x_t        = torch.cat((obs_emb, action_emb), -1) \ | ||||||
|  |             if not self.use_agent_embedding else torch.cat((obs_emb, agent_emb, action_emb), -1) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |         mixed_x_t   = self.mix(x_t) | ||||||
|  |         output_p, _ = self.gru_actor(input=mixed_x_t,  hx=hidden_actor.swapaxes(1, 0)) | ||||||
|  |         output_c, _ = self.gru_critic(input=mixed_x_t, hx=hidden_critic.swapaxes(1, 0)) | ||||||
|  |  | ||||||
|  |         logits = self.action_head(output_p) | ||||||
|  |         critic = self.critic_head(output_c).squeeze(-1) | ||||||
|  |         return dict(logits=logits, critic=critic, hidden_actor=output_p, hidden_critic=output_c) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class NormalizedLinear(nn.Linear): | ||||||
|  |     def __init__(self, in_features: int, out_features: int, | ||||||
|  |                  device=None, dtype=None, trainable_magnitude=False): | ||||||
|  |         super(NormalizedLinear, self).__init__(in_features, out_features, False, device, dtype) | ||||||
|  |         self.d_sqrt = in_features**0.5 | ||||||
|  |         self.trainable_magnitude = trainable_magnitude | ||||||
|  |         self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude) | ||||||
|  |  | ||||||
|  |     def forward(self, input): | ||||||
|  |         normalized_input = F.normalize(input, dim=-1, p=2, eps=1e-5) | ||||||
|  |         normalized_weight = F.normalize(self.weight, dim=-1, p=2, eps=1e-5) | ||||||
|  |         return F.linear(normalized_input, normalized_weight) * self.d_sqrt * self.scale | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class L2Norm(nn.Module): | ||||||
|  |     def __init__(self, in_features, trainable_magnitude=False): | ||||||
|  |         super(L2Norm, self).__init__() | ||||||
|  |         self.d_sqrt = in_features**0.5 | ||||||
|  |         self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude) | ||||||
|  |  | ||||||
|  |     def forward(self, x): | ||||||
|  |         return F.normalize(x, dim=-1, p=2, eps=1e-5) * self.d_sqrt * self.scale | ||||||
							
								
								
									
										55
									
								
								algorithms/marl/seac.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								algorithms/marl/seac.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,55 @@ | |||||||
|  | import torch | ||||||
|  | from torch.distributions import Categorical | ||||||
|  | from algorithms.marl.iac import LoopIAC | ||||||
|  | from algorithms.marl.memory import MARLActorCriticMemory | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class LoopSEAC(LoopIAC): | ||||||
|  |     def __init__(self, cfg): | ||||||
|  |         super(LoopSEAC, self).__init__(cfg) | ||||||
|  |  | ||||||
|  |     def actor_critic(self, tm, networks, gamma, entropy_coef, vf_coef, **kwargs): | ||||||
|  |         obs, actions, done, reward = tm.observation, tm.action, tm.done, tm.reward | ||||||
|  |         outputs = [net(obs, actions, tm.hidden_actor, tm.hidden_critic) for net in networks] | ||||||
|  |  | ||||||
|  |         with torch.inference_mode(True): | ||||||
|  |             true_action_logp = torch.stack([ | ||||||
|  |                 torch.log_softmax(out['logits'][ag_i, :-1], -1) | ||||||
|  |                     .gather(index=actions[ag_i, 1:, None], dim=-1) | ||||||
|  |                 for ag_i, out in enumerate(outputs) | ||||||
|  |             ], 0).squeeze() | ||||||
|  |  | ||||||
|  |         losses = [] | ||||||
|  |  | ||||||
|  |         for ag_i, out in enumerate(outputs): | ||||||
|  |             logits = out['logits'][:, :-1]  # last one only needed for v_{t+1} | ||||||
|  |             critic = out['critic'] | ||||||
|  |  | ||||||
|  |             entropy_loss = Categorical(logits=logits[ag_i]).entropy().mean() | ||||||
|  |             advantages = self.compute_advantages(critic, reward, done, gamma) | ||||||
|  |  | ||||||
|  |             # policy loss | ||||||
|  |             log_ap = torch.log_softmax(logits, -1) | ||||||
|  |             log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze() | ||||||
|  |  | ||||||
|  |             # importance weights | ||||||
|  |             iw = (log_ap - true_action_logp).exp().detach()  # importance_weights | ||||||
|  |  | ||||||
|  |             a2c_loss = (-iw*log_ap * advantages.detach()).mean(-1) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |             value_loss = (iw*advantages.pow(2)).mean(-1)  # n_agent | ||||||
|  |  | ||||||
|  |             # weighted loss | ||||||
|  |             loss = (a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss).mean() | ||||||
|  |             losses.append(loss) | ||||||
|  |  | ||||||
|  |         return losses | ||||||
|  |  | ||||||
|  |     def learn(self, tms: MARLActorCriticMemory, **kwargs): | ||||||
|  |         losses = self.actor_critic(tms, self.net, **self.cfg['algorithm'], **kwargs) | ||||||
|  |         for ag_i, loss in enumerate(losses): | ||||||
|  |             self.optimizer[ag_i].zero_grad() | ||||||
|  |             loss.backward() | ||||||
|  |             torch.nn.utils.clip_grad_norm_(self.net[ag_i].parameters(), 0.5) | ||||||
|  |             self.optimizer[ag_i].step() | ||||||
							
								
								
									
										32
									
								
								algorithms/marl/snac.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								algorithms/marl/snac.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,32 @@ | |||||||
|  | from algorithms.marl.base_ac import BaseActorCritic | ||||||
|  | import torch | ||||||
|  | from torch.distributions import Categorical | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class LoopSNAC(BaseActorCritic): | ||||||
|  |     def __init__(self, cfg): | ||||||
|  |         super().__init__(cfg) | ||||||
|  |  | ||||||
|  |     def load_state_dict(self, path: Path): | ||||||
|  |         path2weights = list(path.glob('*.pt')) | ||||||
|  |         assert len(path2weights) == 1, f'Expected a single set of weights but got {len(path2weights)}' | ||||||
|  |         self.net.load_state_dict(torch.load(path2weights[0])) | ||||||
|  |  | ||||||
|  |     def init_hidden(self): | ||||||
|  |         hidden_actor = self.net.init_hidden_actor() | ||||||
|  |         hidden_critic = self.net.init_hidden_critic() | ||||||
|  |         return dict(hidden_actor=torch.cat([hidden_actor]   * self.n_agents,  0), | ||||||
|  |                     hidden_critic=torch.cat([hidden_critic] * self.n_agents,  0) | ||||||
|  |                     ) | ||||||
|  |  | ||||||
|  |     def get_actions(self, out): | ||||||
|  |         actions = Categorical(logits=out['logits']).sample().squeeze() | ||||||
|  |         return actions | ||||||
|  |  | ||||||
|  |     def forward(self, observations, actions, hidden_actor, hidden_critic): | ||||||
|  |         out = self.net(self._as_torch(observations).unsqueeze(1), | ||||||
|  |                        self._as_torch(actions).unsqueeze(1), | ||||||
|  |                        hidden_actor, hidden_critic | ||||||
|  |                        ) | ||||||
|  |         return out | ||||||
| @@ -1,127 +0,0 @@ | |||||||
| from typing import Union |  | ||||||
| import gym |  | ||||||
| import torch |  | ||||||
| import torch.nn as nn |  | ||||||
| import numpy as np |  | ||||||
| from collections import deque |  | ||||||
| from pathlib import Path |  | ||||||
| import yaml |  | ||||||
| from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class QLearner(BaseLearner): |  | ||||||
|     def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1, |  | ||||||
|                  gamma=0.99, train_every=('step', 4), n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2, |  | ||||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1): |  | ||||||
|         super(QLearner, self).__init__(env, n_agents, train_every, n_grad_steps) |  | ||||||
|         self.q_net = q_net |  | ||||||
|         self.target_q_net = target_q_net |  | ||||||
|         self.target_q_net.eval() |  | ||||||
|         #soft_update(cls.q_net, cls.target_q_net, tau=1.0) |  | ||||||
|         self.buffer = BaseBuffer(buffer_size) |  | ||||||
|         self.target_update = target_update |  | ||||||
|         self.eps = eps_start |  | ||||||
|         self.eps_start = eps_start |  | ||||||
|         self.eps_end = eps_end |  | ||||||
|         self.exploration_fraction = exploration_fraction |  | ||||||
|         self.batch_size = batch_size |  | ||||||
|         self.gamma = gamma |  | ||||||
|         self.tau = tau |  | ||||||
|         self.reg_weight = reg_weight |  | ||||||
|         self.weight_decay = weight_decay |  | ||||||
|         self.lr = lr |  | ||||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr, weight_decay=self.weight_decay) |  | ||||||
|         self.max_grad_norm = max_grad_norm |  | ||||||
|         self.running_reward = deque(maxlen=5) |  | ||||||
|         self.running_loss = deque(maxlen=5) |  | ||||||
|         self.n_updates = 0 |  | ||||||
|  |  | ||||||
|     def save(self, path): |  | ||||||
|         path = Path(path)  # no-op if already instance of Path |  | ||||||
|         path.mkdir(parents=True, exist_ok=True) |  | ||||||
|         hparams = {k: v for k, v in self.__dict__.items() if not(isinstance(v, BaseBuffer) or |  | ||||||
|                                                                  isinstance(v, torch.optim.Optimizer) or |  | ||||||
|                                                                  isinstance(v, gym.Env) or |  | ||||||
|                                                                  isinstance(v, nn.Module)) |  | ||||||
|                    } |  | ||||||
|         hparams.update({'class': self.__class__.__name__}) |  | ||||||
|         with (path / 'hparams.yaml').open('w') as outfile: |  | ||||||
|             yaml.dump(hparams, outfile) |  | ||||||
|         torch.save(self.q_net, path / 'q_net.pt') |  | ||||||
|  |  | ||||||
|     def anneal_eps(self, step, n_steps): |  | ||||||
|         fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0) |  | ||||||
|         self.eps = 1 + fraction * (self.eps_end - 1) |  | ||||||
|  |  | ||||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: |  | ||||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) |  | ||||||
|         if np.random.rand() > self.eps: |  | ||||||
|             action = self.q_net.act(o.float()) |  | ||||||
|         else: |  | ||||||
|             action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)]) |  | ||||||
|         return action |  | ||||||
|  |  | ||||||
|     def on_new_experience(self, experience): |  | ||||||
|         self.buffer.add(experience) |  | ||||||
|  |  | ||||||
|     def on_step_end(self, n_steps): |  | ||||||
|         self.anneal_eps(self.step, n_steps) |  | ||||||
|         if self.step % self.target_update == 0: |  | ||||||
|             print('UPDATE') |  | ||||||
|             soft_update(self.q_net, self.target_q_net, tau=self.tau) |  | ||||||
|  |  | ||||||
|     def _training_routine(self, obs, next_obs, action): |  | ||||||
|         current_q_values = self.q_net(obs) |  | ||||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) |  | ||||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() |  | ||||||
|         return current_q_values, next_q_values_raw |  | ||||||
|  |  | ||||||
|     def _backprop_loss(self, loss): |  | ||||||
|         # log loss |  | ||||||
|         self.running_loss.append(loss.item()) |  | ||||||
|         # Optimize the model |  | ||||||
|         self.optimizer.zero_grad() |  | ||||||
|         loss.backward() |  | ||||||
|         torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm) |  | ||||||
|         self.optimizer.step() |  | ||||||
|  |  | ||||||
|     def train(self): |  | ||||||
|         if len(self.buffer) < self.batch_size: return |  | ||||||
|         for _ in range(self.n_grad_steps): |  | ||||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1]) |  | ||||||
|             pred_q, target_q_raw = self._training_routine(experience.observation, |  | ||||||
|                                                           experience.next_observation, |  | ||||||
|                                                           experience.action) |  | ||||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw |  | ||||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) |  | ||||||
|             self._backprop_loss(loss) |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': |  | ||||||
|     from environments.factory.factory_dirt import DirtFactory, DirtProperties, MovementProperties |  | ||||||
|     from algorithms.common import BaseDDQN, BaseICM |  | ||||||
|     from algorithms.m_q_learner import MQLearner, MQICMLearner |  | ||||||
|     from algorithms.vdn_learner import VDNLearner |  | ||||||
|  |  | ||||||
|     N_AGENTS = 1 |  | ||||||
|  |  | ||||||
|     with (Path(f'../environments/factory/env_default_param.yaml')).open('r') as f: |  | ||||||
|         env_kwargs = yaml.load(f, Loader=yaml.FullLoader) |  | ||||||
|  |  | ||||||
|     env = DirtFactory(**env_kwargs) |  | ||||||
|     obs_shape = np.prod(env.observation_space.shape) |  | ||||||
|     n_actions = env.action_space.n |  | ||||||
|  |  | ||||||
|     dqn, target_dqn = BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128, 1], activation='leaky_relu'),\ |  | ||||||
|                       BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128, 1], activation='leaky_relu') |  | ||||||
|  |  | ||||||
|     icm = BaseICM(backbone_dims=[obs_shape, 64, 32], head_dims=[2*32, 64, n_actions]) |  | ||||||
|  |  | ||||||
|     learner = MQICMLearner(dqn, target_dqn, env, 50000, icm=icm, |  | ||||||
|                            target_update=5000, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, |  | ||||||
|                            train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, |  | ||||||
|                            batch_size=64, weight_decay=1e-3 |  | ||||||
|                            ) |  | ||||||
|     #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') |  | ||||||
|     learner.learn(100000) |  | ||||||
| @@ -1,52 +0,0 @@ | |||||||
| import numpy as np |  | ||||||
| import torch |  | ||||||
| import stable_baselines3 as sb3 |  | ||||||
| from stable_baselines3.common import logger |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class RegDQN(sb3.dqn.DQN): |  | ||||||
|     def __init__(self, *args, reg_weight=0.1, **kwargs): |  | ||||||
|         super().__init__(*args, **kwargs) |  | ||||||
|         self.reg_weight = reg_weight |  | ||||||
|  |  | ||||||
|     def train(self, gradient_steps: int, batch_size: int = 100) -> None: |  | ||||||
|         # Update learning rate according to schedule |  | ||||||
|         self._update_learning_rate(self.policy.optimizer) |  | ||||||
|  |  | ||||||
|         losses = [] |  | ||||||
|         for _ in range(gradient_steps): |  | ||||||
|             # Sample replay buffer |  | ||||||
|             replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env) |  | ||||||
|  |  | ||||||
|             with torch.no_grad(): |  | ||||||
|                 # Compute the next Q-values using the target network |  | ||||||
|                 next_q_values = self.q_net_target(replay_data.next_observations) |  | ||||||
|                 # Follow greedy policy: use the one with the highest value |  | ||||||
|                 next_q_values, _ = next_q_values.max(dim=1) |  | ||||||
|                 # Avoid potential broadcast issue |  | ||||||
|                 next_q_values = next_q_values.reshape(-1, 1) |  | ||||||
|                 # 1-step TD target |  | ||||||
|                 target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values |  | ||||||
|  |  | ||||||
|             # Get current Q-values estimates |  | ||||||
|             current_q_values = self.q_net(replay_data.observations) |  | ||||||
|  |  | ||||||
|             # Retrieve the q-values for the actions from the replay buffer |  | ||||||
|             current_q_values = torch.gather(current_q_values, dim=1, index=replay_data.actions.long()) |  | ||||||
|  |  | ||||||
|             delta = current_q_values - target_q_values |  | ||||||
|             loss = torch.mean(self.reg_weight * current_q_values + torch.pow(delta, 2)) |  | ||||||
|             losses.append(loss.item()) |  | ||||||
|  |  | ||||||
|             # Optimize the policy |  | ||||||
|             self.policy.optimizer.zero_grad() |  | ||||||
|             loss.backward() |  | ||||||
|             # Clip gradient norm |  | ||||||
|             torch.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) |  | ||||||
|             self.policy.optimizer.step() |  | ||||||
|  |  | ||||||
|         # Increase update counter |  | ||||||
|         self._n_updates += gradient_steps |  | ||||||
|  |  | ||||||
|         logger.record("train/n_updates", self._n_updates, exclude="tensorboard") |  | ||||||
|         logger.record("train/loss", np.mean(losses)) |  | ||||||
| @@ -3,14 +3,51 @@ import torch | |||||||
| import numpy as np | import numpy as np | ||||||
| import yaml | import yaml | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| from salina import instantiate_class |  | ||||||
| from salina import TAgent |  | ||||||
| from salina.agents.gyma import ( | def load_class(classname): | ||||||
|     AutoResetGymAgent, |     from importlib import import_module | ||||||
|     _torch_type, |     module_path, class_name = classname.rsplit(".", 1) | ||||||
|     _format_frame, |     module = import_module(module_path) | ||||||
|     _torch_cat_dict |     c = getattr(module, class_name) | ||||||
| ) |     return c | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def instantiate_class(arguments): | ||||||
|  |     from importlib import import_module | ||||||
|  |  | ||||||
|  |     d = dict(arguments) | ||||||
|  |     classname = d["classname"] | ||||||
|  |     del d["classname"] | ||||||
|  |     module_path, class_name = classname.rsplit(".", 1) | ||||||
|  |     module = import_module(module_path) | ||||||
|  |     c = getattr(module, class_name) | ||||||
|  |     return c(**d) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def get_class(arguments): | ||||||
|  |     from importlib import import_module | ||||||
|  |  | ||||||
|  |     if isinstance(arguments, dict): | ||||||
|  |         classname = arguments["classname"] | ||||||
|  |         module_path, class_name = classname.rsplit(".", 1) | ||||||
|  |         module = import_module(module_path) | ||||||
|  |         c = getattr(module, class_name) | ||||||
|  |         return c | ||||||
|  |     else: | ||||||
|  |         classname = arguments.classname | ||||||
|  |         module_path, class_name = classname.rsplit(".", 1) | ||||||
|  |         module = import_module(module_path) | ||||||
|  |         c = getattr(module, class_name) | ||||||
|  |         return c | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def get_arguments(arguments): | ||||||
|  |     from importlib import import_module | ||||||
|  |     d = dict(arguments) | ||||||
|  |     if "classname" in d: | ||||||
|  |         del d["classname"] | ||||||
|  |     return d | ||||||
|  |  | ||||||
|  |  | ||||||
| def load_yaml_file(path: Path): | def load_yaml_file(path: Path): | ||||||
| @@ -21,90 +58,29 @@ def load_yaml_file(path: Path): | |||||||
|  |  | ||||||
| def add_env_props(cfg): | def add_env_props(cfg): | ||||||
|     env = instantiate_class(cfg['env'].copy()) |     env = instantiate_class(cfg['env'].copy()) | ||||||
|     cfg['agent'].update(dict(observation_size=env.observation_space.shape, |     cfg['agent'].update(dict(observation_size=list(env.observation_space.shape), | ||||||
|                              n_actions=env.action_space.n)) |                              n_actions=env.action_space.n)) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class Checkpointer(object): | ||||||
|  |     def __init__(self, experiment_name, root, config, total_steps, n_checkpoints): | ||||||
|  |         self.path = root / experiment_name | ||||||
|  |         self.checkpoint_indices = list(np.linspace(1, total_steps, n_checkpoints, dtype=int) - 1) | ||||||
|  |         self.__current_checkpoint = 0 | ||||||
|  |         self.__current_step = 0 | ||||||
|  |         self.path.mkdir(exist_ok=True, parents=True) | ||||||
|  |         with (self.path / 'config.yaml').open('w') as outfile: | ||||||
|  |             yaml.dump(config, outfile, default_flow_style=False) | ||||||
|  |  | ||||||
|  |     def save_experiment(self, name: str, model): | ||||||
|  |         cpt_path = self.path / f'checkpoint_{self.__current_checkpoint}' | ||||||
|  |         cpt_path.mkdir(exist_ok=True, parents=True) | ||||||
|  |         torch.save(model.state_dict(), cpt_path / f'{name}.pt') | ||||||
|  |  | ||||||
| AGENT_PREFIX = 'agent#' |     def step(self, to_save): | ||||||
| REWARD       =  'reward' |         if self.__current_step in self.checkpoint_indices: | ||||||
| CUMU_REWARD  = 'cumulated_reward' |             print(f'Checkpointing #{self.__current_checkpoint}') | ||||||
| OBS          = 'env_obs' |             for name, model in to_save: | ||||||
| SEP          = '_' |                 self.save_experiment(name, model) | ||||||
| ACTION       = 'action' |             self.__current_checkpoint += 1 | ||||||
|  |         self.__current_step += 1 | ||||||
|  |  | ||||||
| def access_str(agent_i, name, prefix=''): |  | ||||||
|     return f'{prefix}{AGENT_PREFIX}{agent_i}{SEP}{name}' |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class AutoResetGymMultiAgent(AutoResetGymAgent): |  | ||||||
|     def __init__(self, *args, **kwargs): |  | ||||||
|         super(AutoResetGymMultiAgent, self).__init__(*args, **kwargs) |  | ||||||
|  |  | ||||||
|     def per_agent_values(self, name, values): |  | ||||||
|         return {access_str(agent_i, name): value |  | ||||||
|                 for agent_i, value in zip(range(self.n_agents), values)} |  | ||||||
|  |  | ||||||
|     def _initialize_envs(self, n): |  | ||||||
|         super()._initialize_envs(n) |  | ||||||
|         n_agents_list = [self.envs[i].unwrapped.n_agents for i in range(n)] |  | ||||||
|         assert all(n_agents == n_agents_list[0] for n_agents in n_agents_list), \ |  | ||||||
|             'All envs must have the same number of agents.' |  | ||||||
|         self.n_agents = n_agents_list[0] |  | ||||||
|  |  | ||||||
|     def _reset(self, k, save_render): |  | ||||||
|         ret = super()._reset(k, save_render) |  | ||||||
|         obs = ret['env_obs'].squeeze() |  | ||||||
|         self.cumulated_reward[k] = [0.0]*self.n_agents |  | ||||||
|         obs      = self.per_agent_values(OBS,  [_format_frame(obs[i]) for i in range(self.n_agents)]) |  | ||||||
|         cumu_rew = self.per_agent_values(CUMU_REWARD, torch.zeros(self.n_agents, 1).float().unbind()) |  | ||||||
|         rewards  = self.per_agent_values(REWARD,      torch.zeros(self.n_agents, 1).float().unbind()) |  | ||||||
|         ret.update(cumu_rew) |  | ||||||
|         ret.update(rewards) |  | ||||||
|         ret.update(obs) |  | ||||||
|         for remove in ['env_obs', 'cumulated_reward', 'reward']: |  | ||||||
|             del ret[remove] |  | ||||||
|         return ret |  | ||||||
|  |  | ||||||
|     def _step(self, k, action, save_render): |  | ||||||
|         self.timestep[k] += 1 |  | ||||||
|         env = self.envs[k] |  | ||||||
|         if len(action.size()) == 0: |  | ||||||
|             action = action.item() |  | ||||||
|             assert isinstance(action, int) |  | ||||||
|         else: |  | ||||||
|             action = np.array(action.tolist()) |  | ||||||
|         o, r, d, _ = env.step(action) |  | ||||||
|         self.cumulated_reward[k] = [x+y for x, y in zip(r, self.cumulated_reward[k])] |  | ||||||
|         observation = self.per_agent_values(OBS, [_format_frame(o[i]) for i in range(self.n_agents)]) |  | ||||||
|         if d: |  | ||||||
|             self.is_running[k] = False |  | ||||||
|         if save_render: |  | ||||||
|             image = env.render(mode="image").unsqueeze(0) |  | ||||||
|             observation["rendering"] = image |  | ||||||
|         rewards           = self.per_agent_values(REWARD, torch.tensor(r).float().view(-1, 1).unbind()) |  | ||||||
|         cumulated_rewards = self.per_agent_values(CUMU_REWARD, torch.tensor(self.cumulated_reward[k]).float().view(-1, 1).unbind()) |  | ||||||
|         ret = { |  | ||||||
|             **observation, |  | ||||||
|             **rewards, |  | ||||||
|             **cumulated_rewards, |  | ||||||
|             "done": torch.tensor([d]), |  | ||||||
|             "initial_state": torch.tensor([False]), |  | ||||||
|             "timestep": torch.tensor([self.timestep[k]]) |  | ||||||
|         } |  | ||||||
|         return _torch_type(ret) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class CombineActionsAgent(TAgent): |  | ||||||
|     def __init__(self): |  | ||||||
|         super().__init__() |  | ||||||
|         self.pattern = fr'^{AGENT_PREFIX}\d{SEP}{ACTION}$' |  | ||||||
|  |  | ||||||
|     def forward(self, t, **kwargs): |  | ||||||
|         keys = list(self.workspace.keys()) |  | ||||||
|         action_keys = sorted([k for k in keys if bool(re.match(self.pattern, k))]) |  | ||||||
|         actions = torch.cat([self.get((k, t)) for k in action_keys], 0) |  | ||||||
|         actions = actions if len(action_keys) <= 1 else actions.unsqueeze(0) |  | ||||||
|         self.set((f'action', t), actions) |  | ||||||
| @@ -1,55 +0,0 @@ | |||||||
| from typing import Union |  | ||||||
| import torch |  | ||||||
| import numpy as np |  | ||||||
| import pandas as pd |  | ||||||
| from algorithms.q_learner import QLearner |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class VDNLearner(QLearner): |  | ||||||
|     def __init__(self, *args, **kwargs): |  | ||||||
|         super(VDNLearner, self).__init__(*args, **kwargs) |  | ||||||
|         assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead' |  | ||||||
|  |  | ||||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: |  | ||||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) |  | ||||||
|         eps = np.random.rand(self.n_agents) |  | ||||||
|         greedy = eps > self.eps |  | ||||||
|         agent_actions = None |  | ||||||
|         actions = [] |  | ||||||
|         for i in range(self.n_agents): |  | ||||||
|             if greedy[i]: |  | ||||||
|                 if agent_actions is None: agent_actions = self.q_net.act(o.float()) |  | ||||||
|                 action = agent_actions[i] |  | ||||||
|             else: |  | ||||||
|                 action = self.env.action_space.sample() |  | ||||||
|             actions.append(action) |  | ||||||
|         return np.array(actions) |  | ||||||
|  |  | ||||||
|     def train(self): |  | ||||||
|         if len(self.buffer) < self.batch_size: return |  | ||||||
|         for _ in range(self.n_grad_steps): |  | ||||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) |  | ||||||
|             pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) |  | ||||||
|             for agent_i in range(self.n_agents): |  | ||||||
|                 q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], |  | ||||||
|                                                                      experience.next_observation[:, agent_i], |  | ||||||
|                                                                      experience.action[:, agent_i].unsqueeze(-1)) |  | ||||||
|                 pred_q += q_values |  | ||||||
|                 target_q_raw += next_q_values_raw |  | ||||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw |  | ||||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) |  | ||||||
|             self._backprop_loss(loss) |  | ||||||
|  |  | ||||||
|     def evaluate(self, n_episodes=100, render=False): |  | ||||||
|         with torch.no_grad(): |  | ||||||
|             data = [] |  | ||||||
|             for eval_i in range(n_episodes): |  | ||||||
|                 obs, done = self.env.reset(), False |  | ||||||
|                 while not done: |  | ||||||
|                     action = self.get_action(obs) |  | ||||||
|                     next_obs, reward, done, info = self.env.step(action) |  | ||||||
|                     if render: self.env.render() |  | ||||||
|                     obs = next_obs  # srsly i'm so stupid |  | ||||||
|                     info.update({'reward': reward, 'eval_episode': eval_i}) |  | ||||||
|                     data.append(info) |  | ||||||
|         return pd.DataFrame(data).fillna(0) |  | ||||||
| @@ -1,22 +1,25 @@ | |||||||
| def make(env_name, pomdp_r=2, max_steps=400, stack_n_frames=3, n_agents=1,  individual_rewards=False): | def make(env_name, pomdp_r=2, max_steps=400, stack_n_frames=3, n_agents=1, individual_rewards=False): | ||||||
|     import yaml |     import yaml | ||||||
|     from pathlib import Path |     from pathlib import Path | ||||||
|     from environments.factory.combined_factories import DirtItemFactory |     from environments.factory.combined_factories import DirtItemFactory | ||||||
|     from environments.factory.factory_item import ItemFactory, ItemProperties |     from environments.factory.factory_item import ItemFactory, ItemProperties | ||||||
|     from environments.factory.factory_dirt import DirtProperties, DirtFactory |     from environments.factory.factory_dirt import DirtProperties, DirtFactory, RewardsDirt | ||||||
|     from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions |     from environments.utility_classes import AgentRenderOptions | ||||||
|  |  | ||||||
|     with (Path(__file__).parent / 'levels' / 'parameters' / f'{env_name}.yaml').open('r') as stream: |     with (Path(__file__).parent / 'levels' / 'parameters' / f'{env_name}.yaml').open('r') as stream: | ||||||
|         dictionary = yaml.load(stream, Loader=yaml.FullLoader) |         dictionary = yaml.load(stream, Loader=yaml.FullLoader) | ||||||
|  |  | ||||||
|     obs_props = ObservationProperties(render_agents=AgentRenderOptions.COMBINED, |     obs_props = dict(render_agents=AgentRenderOptions.COMBINED, | ||||||
|                                       frames_to_stack=stack_n_frames, pomdp_r=pomdp_r) |                      pomdp_r=pomdp_r, | ||||||
|  |                      indicate_door_area=True, | ||||||
|  |                      show_global_position_info=False, | ||||||
|  |                      frames_to_stack=stack_n_frames) | ||||||
|  |  | ||||||
|     factory_kwargs = dict(n_agents=n_agents, individual_rewards=individual_rewards, |     factory_kwargs = dict(**dictionary, | ||||||
|                           max_steps=max_steps, obs_prop=obs_props, |                           n_agents=n_agents, | ||||||
|                           mv_prop=MovementProperties(**dictionary['movement_props']), |                           individual_rewards=individual_rewards, | ||||||
|                           dirt_prop=DirtProperties(**dictionary['dirt_props']), |                           max_steps=max_steps, | ||||||
|                           record_episodes=False, verbose=False, **dictionary['factory_props'] |                           obs_prop=obs_props, | ||||||
|  |                           verbose=False, | ||||||
|                           ) |                           ) | ||||||
|  |  | ||||||
|     return DirtFactory(**factory_kwargs).__enter__() |     return DirtFactory(**factory_kwargs).__enter__() | ||||||
|   | |||||||
| @@ -1,8 +1,12 @@ | |||||||
| movement_props: | parse_doors:                True | ||||||
|  | doors_have_area:            True | ||||||
|  | done_at_collision:          False | ||||||
|  | level_name:                 "rooms" | ||||||
|  | mv_prop: | ||||||
|     allow_diagonal_movement:    True |     allow_diagonal_movement:    True | ||||||
|     allow_square_movement:      True |     allow_square_movement:      True | ||||||
|     allow_no_op:                False |     allow_no_op:                False | ||||||
| dirt_props: | dirt_prop: | ||||||
|     initial_dirt_ratio:         0.35 |     initial_dirt_ratio:         0.35 | ||||||
|     initial_dirt_spawn_r_var :  0.1 |     initial_dirt_spawn_r_var :  0.1 | ||||||
|     clean_amount:               0.34 |     clean_amount:               0.34 | ||||||
| @@ -12,8 +16,15 @@ dirt_props: | |||||||
|     spawn_frequency:            0 |     spawn_frequency:            0 | ||||||
|     max_spawn_ratio:            0.05 |     max_spawn_ratio:            0.05 | ||||||
|     dirt_smear_amount:          0.0 |     dirt_smear_amount:          0.0 | ||||||
|     agent_can_interact:         True |     done_when_clean:            True | ||||||
| factory_props: | rewards_base: | ||||||
|     parse_doors:                True |     MOVEMENTS_VALID:    0 | ||||||
|     level_name:                 "rooms" |     MOVEMENTS_FAIL:     0 | ||||||
|     doors_have_area:            False |     NOOP:               0 | ||||||
|  |     USE_DOOR_VALID:     0 | ||||||
|  |     USE_DOOR_FAIL:      0 | ||||||
|  |     COLLISION:          0 | ||||||
|  | rewards_dirt: | ||||||
|  |     CLEAN_UP_VALID:       1 | ||||||
|  |     CLEAN_UP_FAIL:        0 | ||||||
|  |     CLEAN_UP_LAST_PIECE:  5 | ||||||
| @@ -6,7 +6,7 @@ matplotlib>=3.4.1 | |||||||
| stable-baselines3>=1.0 | stable-baselines3>=1.0 | ||||||
| pygame>=2.1.0 | pygame>=2.1.0 | ||||||
| gym>=0.18.0 | gym>=0.18.0 | ||||||
| networkx>=2.6.1 | networkx>=2.6.3 | ||||||
| simplejson>=3.17.5 | simplejson>=3.17.5 | ||||||
| PyYAML>=6.0 | PyYAML>=6.0 | ||||||
| git+https://github.com/facebookresearch/salina.git@main#egg=salina | einops | ||||||
							
								
								
									
										24
									
								
								studies/normalization_study.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								studies/normalization_study.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | |||||||
|  | from algorithms.utils import Checkpointer | ||||||
|  | from pathlib import Path | ||||||
|  | from algorithms.utils import load_yaml_file, add_env_props, instantiate_class, load_class | ||||||
|  | from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC | ||||||
|  |  | ||||||
|  |  | ||||||
|  | #study_root = Path(__file__).parent / 'curious_study' | ||||||
|  | study_root = Path('/Users/romue/PycharmProjects/EDYS/algorithms/marl') | ||||||
|  |  | ||||||
|  | for i in range(0, 5): | ||||||
|  |     for name in ['example_config']: | ||||||
|  |         cfg = load_yaml_file(study_root / f'{name}.yaml') | ||||||
|  |         add_env_props(cfg) | ||||||
|  |  | ||||||
|  |         env = instantiate_class(cfg['env']) | ||||||
|  |         net = instantiate_class(cfg['agent']) | ||||||
|  |         max_steps = cfg['algorithm']['max_steps'] | ||||||
|  |         n_steps = cfg['algorithm']['n_steps'] | ||||||
|  |  | ||||||
|  |         checkpointer = Checkpointer(f'{name}#{i}', study_root, cfg, max_steps, 250) | ||||||
|  |  | ||||||
|  |         loop = load_class(cfg['method'])(cfg) | ||||||
|  |         df = loop.train_loop(checkpointer) | ||||||
|  |  | ||||||
							
								
								
									
										32
									
								
								studies/playground_file.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								studies/playground_file.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,32 @@ | |||||||
|  | import numpy as np | ||||||
|  | import pandas as pd | ||||||
|  | from pathlib import Path | ||||||
|  | import matplotlib.pyplot as plt | ||||||
|  | import seaborn as sns | ||||||
|  |  | ||||||
|  | study_root = Path(__file__).parent / 'entropy_study' | ||||||
|  | names_all = ['basic_gru', 'layernorm_gru', 'spectralnorm_gru', 'nonorm_gru'] | ||||||
|  | names_only_1 = ['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru', 'basic_gru'] | ||||||
|  | names_only_2 = ['L2NoCh_gru', 'L2NoAh_gru', 'nomix_gru', 'basic_gru'] | ||||||
|  |  | ||||||
|  | names = names_only_2 | ||||||
|  | #names = ['nonorm_gru'] | ||||||
|  | # /Users/romue/PycharmProjects/EDYS/studies/normalization_study/basic_gru#3 | ||||||
|  | csvs = [] | ||||||
|  | for name in ['basic_gru', 'nonorm_gru', 'spectralnorm_gru']: | ||||||
|  |     for run in range(0, 1): | ||||||
|  |         try: | ||||||
|  |             df = pd.read_csv(study_root / f'{name}#{run}' / 'results.csv') | ||||||
|  |             df = df[df.agent == 'sum'] | ||||||
|  |             df = df.groupby(['checkpoint', 'run']).mean().reset_index() | ||||||
|  |             df['method'] = name | ||||||
|  |             df['run_'] = run | ||||||
|  |  | ||||||
|  |             df.reward = df.reward.rolling(15).mean() | ||||||
|  |             csvs.append(df) | ||||||
|  |         except Exception as e: | ||||||
|  |             print(f'skipped {run}\t {name}') | ||||||
|  |  | ||||||
|  | csvs = pd.concat(csvs).rename(columns={"checkpoint": "steps*2e3", "B": "c"}) | ||||||
|  | sns.lineplot(data=csvs, x='steps*2e3', y='reward', hue='method', palette='husl', ci='sd', linewidth=1.8) | ||||||
|  | plt.savefig('entropy.png') | ||||||
| @@ -1,139 +0,0 @@ | |||||||
| from salina.agents.gyma import AutoResetGymAgent |  | ||||||
| from salina.agents import Agents, TemporalAgent |  | ||||||
| from salina.rl.functional import _index, gae |  | ||||||
| import torch |  | ||||||
| import torch.nn as nn |  | ||||||
| from torch.distributions import Categorical |  | ||||||
| from salina import TAgent, Workspace, get_arguments, get_class, instantiate_class |  | ||||||
| from pathlib import Path |  | ||||||
| import numpy as np |  | ||||||
| from tqdm import tqdm |  | ||||||
| import time |  | ||||||
| from algorithms.utils import ( |  | ||||||
|     add_env_props, |  | ||||||
|     load_yaml_file, |  | ||||||
|     CombineActionsAgent, |  | ||||||
|     AutoResetGymMultiAgent, |  | ||||||
|     access_str, |  | ||||||
|     AGENT_PREFIX, REWARD, CUMU_REWARD, OBS, SEP |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class A2CAgent(TAgent): |  | ||||||
|     def __init__(self, observation_size, hidden_size, n_actions, agent_id): |  | ||||||
|         super().__init__() |  | ||||||
|         observation_size = np.prod(observation_size) |  | ||||||
|         print(observation_size) |  | ||||||
|         self.agent_id = agent_id |  | ||||||
|         self.model = nn.Sequential( |  | ||||||
|             nn.Flatten(), |  | ||||||
|             nn.Linear(observation_size, hidden_size), |  | ||||||
|             nn.ELU(), |  | ||||||
|             nn.Linear(hidden_size, hidden_size), |  | ||||||
|             nn.ELU(), |  | ||||||
|             nn.Linear(hidden_size, hidden_size), |  | ||||||
|             nn.ELU() |  | ||||||
|         ) |  | ||||||
|         self.action_head = nn.Linear(hidden_size, n_actions) |  | ||||||
|         self.critic_head = nn.Linear(hidden_size, 1) |  | ||||||
|  |  | ||||||
|     def get_obs(self, t): |  | ||||||
|         observation = self.get((f'env/{access_str(self.agent_id, OBS)}', t)) |  | ||||||
|         return observation |  | ||||||
|  |  | ||||||
|     def forward(self, t, stochastic, **kwargs): |  | ||||||
|         observation = self.get_obs(t) |  | ||||||
|         features = self.model(observation) |  | ||||||
|         scores = self.action_head(features) |  | ||||||
|         probs = torch.softmax(scores, dim=-1) |  | ||||||
|         critic = self.critic_head(features).squeeze(-1) |  | ||||||
|         if stochastic: |  | ||||||
|             action = torch.distributions.Categorical(probs).sample() |  | ||||||
|         else: |  | ||||||
|             action = probs.argmax(1) |  | ||||||
|         self.set((f'{access_str(self.agent_id, "action")}', t), action) |  | ||||||
|         self.set((f'{access_str(self.agent_id, "action_probs")}', t), probs) |  | ||||||
|         self.set((f'{access_str(self.agent_id, "critic")}', t), critic) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': |  | ||||||
|     # Setup workspace |  | ||||||
|     uid = time.time() |  | ||||||
|     workspace = Workspace() |  | ||||||
|     n_agents = 2 |  | ||||||
|  |  | ||||||
|     # load config |  | ||||||
|     cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml') |  | ||||||
|     add_env_props(cfg) |  | ||||||
|     cfg['env'].update({'n_agents': n_agents}) |  | ||||||
|  |  | ||||||
|     # instantiate agent and env |  | ||||||
|     env_agent = AutoResetGymMultiAgent( |  | ||||||
|         get_class(cfg['env']), |  | ||||||
|         get_arguments(cfg['env']), |  | ||||||
|         n_envs=1 |  | ||||||
|     ) |  | ||||||
|  |  | ||||||
|     a2c_agents = [instantiate_class({**cfg['agent'], |  | ||||||
|                                      'agent_id': agent_id}) |  | ||||||
|                   for agent_id in range(n_agents)] |  | ||||||
|  |  | ||||||
|     # combine agents |  | ||||||
|     acquisition_agent = TemporalAgent(Agents(env_agent, *a2c_agents, CombineActionsAgent())) |  | ||||||
|     acquisition_agent.seed(69) |  | ||||||
|  |  | ||||||
|     # optimizers & other parameters |  | ||||||
|     cfg_optim = cfg['algorithm']['optimizer'] |  | ||||||
|     optimizers = [get_class(cfg_optim)(a2c_agent.parameters(), **get_arguments(cfg_optim)) |  | ||||||
|                   for a2c_agent in a2c_agents] |  | ||||||
|     n_timesteps = cfg['algorithm']['n_timesteps'] |  | ||||||
|  |  | ||||||
|     # Decision making loop |  | ||||||
|     best = -float('inf') |  | ||||||
|     with tqdm(range(int(cfg['algorithm']['max_epochs'] / n_timesteps))) as pbar: |  | ||||||
|         for epoch in pbar: |  | ||||||
|             workspace.zero_grad() |  | ||||||
|             if epoch > 0: |  | ||||||
|                 workspace.copy_n_last_steps(1) |  | ||||||
|                 acquisition_agent(workspace, t=1, n_steps=n_timesteps-1, stochastic=True) |  | ||||||
|             else: |  | ||||||
|                 acquisition_agent(workspace, t=0, n_steps=n_timesteps,  stochastic=True) |  | ||||||
|  |  | ||||||
|             for agent_id in range(n_agents): |  | ||||||
|                 critic, done, action_probs, reward, action = workspace[ |  | ||||||
|                     access_str(agent_id, 'critic'), |  | ||||||
|                     "env/done", |  | ||||||
|                     access_str(agent_id, 'action_probs'), |  | ||||||
|                     access_str(agent_id, 'reward', 'env/'), |  | ||||||
|                     access_str(agent_id, 'action') |  | ||||||
|                 ] |  | ||||||
|                 td = gae(critic, reward, done, 0.98, 0.25) |  | ||||||
|                 td_error = td ** 2 |  | ||||||
|                 critic_loss = td_error.mean() |  | ||||||
|                 entropy_loss = Categorical(action_probs).entropy().mean() |  | ||||||
|                 action_logp = _index(action_probs, action).log() |  | ||||||
|                 a2c_loss = action_logp[:-1] * td.detach() |  | ||||||
|                 a2c_loss = a2c_loss.mean() |  | ||||||
|                 loss = ( |  | ||||||
|                     -0.001 * entropy_loss |  | ||||||
|                     + 1.0 * critic_loss |  | ||||||
|                     - 0.1 * a2c_loss |  | ||||||
|                 ) |  | ||||||
|                 optimizer = optimizers[agent_id] |  | ||||||
|                 optimizer.zero_grad() |  | ||||||
|                 loss.backward() |  | ||||||
|                 #torch.nn.utils.clip_grad_norm_(a2c_agents[agent_id].parameters(), .5) |  | ||||||
|                 optimizer.step() |  | ||||||
|  |  | ||||||
|                 # Compute the cumulated reward on final_state |  | ||||||
|                 rews = '' |  | ||||||
|                 for agent_i in range(n_agents): |  | ||||||
|                     creward = workspace['env/'+access_str(agent_i, CUMU_REWARD)] |  | ||||||
|                     creward = creward[done] |  | ||||||
|                     if creward.size()[0] > 0: |  | ||||||
|                         rews += f'{AGENT_PREFIX}{agent_i}: {creward.mean().item():.2f}  |  ' |  | ||||||
|                         """if cum_r > best: |  | ||||||
|                             torch.save(a2c_agent.state_dict(), Path(__file__).parent / f'agent_{uid}.pt') |  | ||||||
|                             best = cum_r""" |  | ||||||
|                         pbar.set_description(rews, refresh=True) |  | ||||||
|  |  | ||||||
| @@ -1,27 +0,0 @@ | |||||||
| agent: |  | ||||||
|   classname:        studies.sat_mad.A2CAgent |  | ||||||
|   observation_size: 4*5*5 |  | ||||||
|   hidden_size:      128 |  | ||||||
|   n_actions:        10 |  | ||||||
|  |  | ||||||
| env: |  | ||||||
|   classname:          environments.factory.make |  | ||||||
|   env_name:           "DirtyFactory-v0" |  | ||||||
|   n_agents:           1 |  | ||||||
|   pomdp_r:            2 |  | ||||||
|   max_steps:          400 |  | ||||||
|   stack_n_frames:     3 |  | ||||||
|   individual_rewards: True |  | ||||||
|  |  | ||||||
| algorithm: |  | ||||||
|   max_epochs:             1000000 |  | ||||||
|   n_envs:                 1 |  | ||||||
|   n_timesteps:            10 |  | ||||||
|   discount_factor:        0.99 |  | ||||||
|   entropy_coef:           0.01 |  | ||||||
|   critic_coef:            1.0 |  | ||||||
|   gae:                    0.25 |  | ||||||
|   optimizer: |  | ||||||
|     classname:            torch.optim.Adam |  | ||||||
|     lr:                   0.0003 |  | ||||||
|     weight_decay:         0.0 |  | ||||||
							
								
								
									
										34
									
								
								studies/viz_policy.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								studies/viz_policy.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,34 @@ | |||||||
|  | import pandas as pd | ||||||
|  | from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC | ||||||
|  | from pathlib import Path | ||||||
|  | from algorithms.utils import load_yaml_file | ||||||
|  | from tqdm import trange | ||||||
|  | study = 'curious_study' | ||||||
|  | study_root = Path(__file__).parent / study | ||||||
|  |  | ||||||
|  | #['L2NoAh_gru', 'L2NoCh_gru', 'nomix_gru']: | ||||||
|  | render = True | ||||||
|  | eval_eps = 3 | ||||||
|  | for run in range(0, 5): | ||||||
|  |     for name in ['basic_gru']:#['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru']: #['layernorm_gru', 'basic_gru', 'nonorm_gru', 'spectralnorm_gru']: | ||||||
|  |         cfg = load_yaml_file(Path(__file__).parent / study / f'{name}.yaml') | ||||||
|  |         p_root = Path(study_root / f'{name}#{run}') | ||||||
|  |         dfs = [] | ||||||
|  |         for i in trange(500): | ||||||
|  |             path = p_root / f'checkpoint_{i}' | ||||||
|  |  | ||||||
|  |             snac = LoopSEAC(cfg) | ||||||
|  |             snac.load_state_dict(path) | ||||||
|  |             snac.eval() | ||||||
|  |  | ||||||
|  |             df = snac.eval_loop(render=render, n_episodes=eval_eps) | ||||||
|  |             df['checkpoint'] = i | ||||||
|  |             dfs.append(df) | ||||||
|  |  | ||||||
|  |         results = pd.concat(dfs) | ||||||
|  |         results['run'] = run | ||||||
|  |         results.to_csv(p_root / 'results.csv', index=False) | ||||||
|  |  | ||||||
|  | #sns.lineplot(data=results, x='checkpoint', y='reward', hue='agent', palette='husl') | ||||||
|  |  | ||||||
|  | #plt.savefig(f'{experiment_name}.png') | ||||||
| @@ -1,39 +0,0 @@ | |||||||
| from salina.agents import Agents, TemporalAgent |  | ||||||
| import torch |  | ||||||
| from salina import Workspace, get_arguments, get_class, instantiate_class |  | ||||||
| from pathlib import Path |  | ||||||
| from salina.agents.gyma import GymAgent |  | ||||||
| import time |  | ||||||
| from algorithms.utils import load_yaml_file, add_env_props |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': |  | ||||||
|     # Setup workspace |  | ||||||
|     uid = time.time() |  | ||||||
|     workspace = Workspace() |  | ||||||
|     weights = Path('/Users/romue/PycharmProjects/EDYS/studies/agent_1636994369.145843.pt') |  | ||||||
|  |  | ||||||
|     cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml') |  | ||||||
|     add_env_props(cfg) |  | ||||||
|     cfg['env'].update({'n_agents': 2}) |  | ||||||
|  |  | ||||||
|     # instantiate agent and env |  | ||||||
|     env_agent = GymAgent( |  | ||||||
|         get_class(cfg['env']), |  | ||||||
|         get_arguments(cfg['env']), |  | ||||||
|         n_envs=1 |  | ||||||
|     ) |  | ||||||
|  |  | ||||||
|     agents = [] |  | ||||||
|     for _ in range(2): |  | ||||||
|         a2c_agent = instantiate_class(cfg['agent']) |  | ||||||
|         if weights: |  | ||||||
|             a2c_agent.load_state_dict(torch.load(weights)) |  | ||||||
|         agents.append(a2c_agent) |  | ||||||
|  |  | ||||||
|     # combine agents |  | ||||||
|     acquisition_agent = TemporalAgent(Agents(env_agent, *agents)) |  | ||||||
|     acquisition_agent.seed(42) |  | ||||||
|  |  | ||||||
|     acquisition_agent(workspace, t=0, n_steps=400, stochastic=False, save_render=True) |  | ||||||
|  |  | ||||||
|  |  | ||||||
		Reference in New Issue
	
	Block a user
	 Robert Müller
					Robert Müller