mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
added mlpmaker
This commit is contained in:
parent
b5d729e597
commit
f0bb507121
@ -47,19 +47,22 @@ def soft_update(local_model, target_model, tau):
|
|||||||
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
|
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
|
||||||
|
|
||||||
|
|
||||||
def mlp_maker(dims):
|
def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'):
|
||||||
layers = [('Flatten', nn.Flatten())]
|
activations = {'elu': nn.ELU, 'relu': nn.ReLU,
|
||||||
|
'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh,
|
||||||
|
'gelu': nn.GELU, 'identity': nn.Identity}
|
||||||
|
layers = [('Flatten', nn.Flatten())] if flatten else []
|
||||||
for i in range(1, len(dims)):
|
for i in range(1, len(dims)):
|
||||||
layers.append((f'Linear#{i - 1}', nn.Linear(dims[i - 1], dims[i])))
|
layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i])))
|
||||||
if i != len(dims) - 1:
|
activation_str = activation if i != len(dims)-1 else activation_last
|
||||||
layers.append(('ELU', nn.ELU()))
|
layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]()))
|
||||||
return nn.Sequential(OrderedDict(layers))
|
return nn.Sequential(OrderedDict(layers))
|
||||||
|
|
||||||
|
|
||||||
class BaseDQN(nn.Module):
|
class BaseDQN(nn.Module):
|
||||||
def __init__(self, dims=[3*5*5, 64, 64, 9]):
|
def __init__(self, dims=[3*5*5, 64, 64, 9]):
|
||||||
super(BaseDQN, self).__init__()
|
super(BaseDQN, self).__init__()
|
||||||
self.net = mlp_maker(dims)
|
self.net = mlp_maker(dims, flatten=True)
|
||||||
|
|
||||||
def act(self, x) -> np.ndarray:
|
def act(self, x) -> np.ndarray:
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
@ -76,6 +79,7 @@ class BaseDDQN(BaseDQN):
|
|||||||
value_dims=[64,1],
|
value_dims=[64,1],
|
||||||
advantage_dims=[64,9]):
|
advantage_dims=[64,9]):
|
||||||
super(BaseDDQN, self).__init__(backbone_dims)
|
super(BaseDDQN, self).__init__(backbone_dims)
|
||||||
|
self.net = mlp_maker(backbone_dims, flatten=True)
|
||||||
self.value_head = mlp_maker(value_dims)
|
self.value_head = mlp_maker(value_dims)
|
||||||
self.advantage_head = mlp_maker(advantage_dims)
|
self.advantage_head = mlp_maker(advantage_dims)
|
||||||
|
|
||||||
@ -86,13 +90,11 @@ class BaseDDQN(BaseDQN):
|
|||||||
return values + (advantages - advantages.mean())
|
return values + (advantages - advantages.mean())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class BaseQlearner:
|
class BaseQlearner:
|
||||||
def __init__(self, q_net, target_q_net, env, buffer_size, target_update, eps_end, n_agents=1,
|
def __init__(self, q_net, target_q_net, env, buffer_size, target_update, eps_end, n_agents=1,
|
||||||
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10,
|
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10,
|
||||||
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
|
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
|
||||||
self.q_net = q_net
|
self.q_net = q_net
|
||||||
print(self.q_net)
|
|
||||||
self.target_q_net = target_q_net
|
self.target_q_net = target_q_net
|
||||||
self.target_q_net.eval()
|
self.target_q_net.eval()
|
||||||
soft_update(self.q_net, self.target_q_net, tau=1.0)
|
soft_update(self.q_net, self.target_q_net, tau=1.0)
|
||||||
@ -205,14 +207,13 @@ class BaseQlearner:
|
|||||||
pred_q += q_values
|
pred_q += q_values
|
||||||
target_q_raw += next_q_values_raw
|
target_q_raw += next_q_values_raw
|
||||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||||
#print(pred_q[0], target_q_raw[0], target_q[0], experience.reward[0])
|
|
||||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||||
self._backprop_loss(loss)
|
self._backprop_loss(loss)
|
||||||
|
|
||||||
|
|
||||||
class MDQN(BaseQlearner):
|
class MunchhausenQLearner(BaseQlearner):
|
||||||
def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs):
|
def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs):
|
||||||
super(MDQN, self).__init__(*args, **kwargs)
|
super(MunchhausenQLearner, self).__init__(*args, **kwargs)
|
||||||
assert self.n_agents == 1, 'M-DQN currently only supports single agent training'
|
assert self.n_agents == 1, 'M-DQN currently only supports single agent training'
|
||||||
self.temperature = temperature
|
self.temperature = temperature
|
||||||
self.alpha = alpha
|
self.alpha = alpha
|
||||||
@ -260,7 +261,6 @@ class MDQN(BaseQlearner):
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||||
from gym.wrappers import FrameStack
|
|
||||||
|
|
||||||
N_AGENTS = 1
|
N_AGENTS = 1
|
||||||
|
|
||||||
@ -272,6 +272,6 @@ if __name__ == '__main__':
|
|||||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||||
|
|
||||||
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
||||||
learner = MDQN(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
learner = MunchhausenQLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||||
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||||
learner.learn(100000)
|
learner.learn(100000)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user