State of repo for ISOLA paper

This commit is contained in:
Julian Schönberger
2024-10-25 17:24:11 +02:00
parent 95749d8238
commit e37b23c20c
120 changed files with 1487 additions and 6439 deletions

View File

@@ -1,4 +1,3 @@
from .quickstart import init
from marl_factory_grid.environment.factory import Factory
"""
Main module of the 'rl-factory-grid'-environment.

View File

@@ -0,0 +1,80 @@
from pathlib import Path
from marl_factory_grid.algorithms.marl.a2c_coin import A2C
from marl_factory_grid.algorithms.marl.utils import get_algorithms_marl_path
from marl_factory_grid.algorithms.utils import load_yaml_file
####### Training routines ######
def rerun_coin_quadrant_agent1_training():
train_cfg_path = Path(f'./marl_factory_grid/algorithms/marl/single_agent_configs/coin_quadrant_train_config.yaml')
eval_cfg_path = Path(f'./marl_factory_grid/algorithms/marl/single_agent_configs/coin_quadrant_eval_config.yaml')
train_cfg = load_yaml_file(train_cfg_path)
eval_cfg = load_yaml_file(eval_cfg_path)
print("Training phase")
agent = A2C(train_cfg=train_cfg, eval_cfg=eval_cfg, mode="train")
agent.train_loop()
print("Evaluation phase")
agent.eval_loop("coin_quadrant", n_episodes=1)
def two_rooms_training(max_steps, agent_name):
train_cfg_path = Path(f'./marl_factory_grid/algorithms/marl/single_agent_configs/two_rooms_train_config.yaml')
eval_cfg_path = Path(f'./marl_factory_grid/algorithms/marl/single_agent_configs/two_rooms_eval_config.yaml')
train_cfg = load_yaml_file(train_cfg_path)
eval_cfg = load_yaml_file(eval_cfg_path)
# train_cfg["algorithm"]["max_steps"] = max_steps
train_cfg["env"]["env_name"] = f"marl/single_agent_configs/two_rooms_{agent_name}_train_config"
eval_cfg["env"]["env_name"] = f"marl/single_agent_configs/two_rooms_{agent_name}_eval_config"
print("Training phase")
agent = A2C(train_cfg=train_cfg, eval_cfg=eval_cfg, mode="train")
agent.train_loop()
print("Evaluation phase")
agent.eval_loop("two_rooms", n_episodes=1)
def rerun_two_rooms_agent1_training():
two_rooms_training(max_steps=190000, agent_name="agent1")
def rerun_two_rooms_agent2_training():
two_rooms_training(max_steps=260000, agent_name="agent2")
####### Eval routines ########
def single_agent_eval(config_name, run_folder_name):
eval_cfg_path = Path(f'./marl_factory_grid/algorithms/marl/single_agent_configs/{config_name}_eval_config.yaml')
eval_cfg = load_yaml_file(eval_cfg_path)
# A value for train_cfg is required, but the train environment won't be used
agent = A2C(eval_cfg=eval_cfg, mode="eval")
print("Evaluation phase")
agent.load_agents(config_name, [run_folder_name])
agent.eval_loop(config_name, 1)
def multi_agent_eval(config_name, runs, emergent_phenomenon=False):
eval_cfg_path = Path(f'{get_algorithms_marl_path()}/multi_agent_configs/{config_name}' +
f'_eval_config{"_emergent" if emergent_phenomenon else ""}.yaml')
eval_cfg = load_yaml_file(eval_cfg_path)
# A value for train_cfg is required, but the train environment won't be used
agent = A2C(eval_cfg=eval_cfg, mode="eval")
print("Evaluation phase")
agent.load_agents(config_name, runs)
agent.eval_loop(config_name, 1)
def coin_quadrant_multi_agent_rl_eval(emergent_phenomenon):
# Using an empty list for runs indicates, that the default agents in algorithms/agent_models should be used.
# If you want to use different agents, that were obtained by running the training with a different seed, you can
# load these agents by inserting the names of the runs in study_out/ into the runs list e.g. ["run1", "run2"]
multi_agent_eval("coin_quadrant", [], emergent_phenomenon)
def two_rooms_multi_agent_rl_eval(emergent_phenomenon):
# Using an empty list for runs indicates, that the default agents in algorithms/agent_models should be used.
# If you want to use different agents, that were obtained by running the training with a different seed, you can
# load these agents by inserting the names of the runs in study_out/ into the runs list e.g. ["run1", "run2"]
multi_agent_eval("two_rooms", [], emergent_phenomenon)

View File

@@ -0,0 +1 @@

View File

@@ -1,53 +1,66 @@
import os
import pickle
import torch
from typing import Union, List
import numpy as np
from tqdm import tqdm
from marl_factory_grid.algorithms.rl.base_a2c import PolicyGradient
from marl_factory_grid.algorithms.rl.constants import Names
from marl_factory_grid.algorithms.rl.utils import transform_observations, _as_torch, is_door_close, \
from marl_factory_grid.algorithms.marl.base_a2c import PolicyGradient, cumulate_discount
from marl_factory_grid.algorithms.marl.constants import Names
from marl_factory_grid.algorithms.marl.utils import transform_observations, _as_torch, is_door_close, \
get_coin_piles_positions, update_target_pile, update_ordered_coin_piles, get_all_collected_coin_piles, \
distribute_indices, set_agents_spawnpoints, get_ordered_coin_piles, handle_finished_episode, save_configs, \
save_agent_models, get_all_observations, get_agents_positions
from marl_factory_grid.algorithms.utils import add_env_props
from marl_factory_grid.utils.plotting.plot_single_runs import plot_action_maps, plot_reward_development, \
create_info_maps
save_agent_models, get_all_observations, get_agents_positions, has_low_change_phase_started, significant_deviation, \
get_agent_models_path
from marl_factory_grid.algorithms.utils import add_env_props, get_study_out_path
from marl_factory_grid.utils.plotting.plot_single_runs import plot_action_maps, plot_return_development, \
create_info_maps, plot_return_development_change
nms = Names
ListOrTensor = Union[List, torch.Tensor]
class A2C:
def __init__(self, train_cfg, eval_cfg):
self.results_path = None
self.agents = None
self.act_dim = None
self.obs_dim = None
self.factory = add_env_props(train_cfg)
def __init__(self, train_cfg=None, eval_cfg=None, mode="train"):
self.mode = mode
if mode == nms.TRAIN:
self.train_factory = add_env_props(train_cfg)
self.train_cfg = train_cfg
self.n_agents = train_cfg[nms.ENV][nms.N_AGENTS]
else:
self.n_agents = eval_cfg[nms.ENV][nms.N_AGENTS]
self.eval_factory = add_env_props(eval_cfg)
self.__training = True
self.train_cfg = train_cfg
self.eval_cfg = eval_cfg
self.cfg = train_cfg
self.n_agents = train_cfg[nms.ENV][nms.N_AGENTS]
self.setup()
self.reward_development = []
self.action_probabilities = {agent_idx: [] for agent_idx in range(self.n_agents)}
def setup(self):
""" Initialize agents and create entry for run results according to configuration """
if self.mode == "train":
self.cfg = self.train_cfg
self.factory = self.train_factory
self.gamma = self.cfg[nms.ALGORITHM][nms.GAMMA]
else:
self.cfg = self.eval_cfg
self.factory = self.eval_factory
self.gamma = 0.99
seed = self.cfg[nms.ALGORITHM][nms.SEED]
print("Algorithm Seed: ", seed)
if seed == -1:
seed = np.random.choice(range(1000))
print("Algorithm seed is -1. Pick random seed: ", seed)
self.obs_dim = 2 + 2 * len(get_coin_piles_positions(self.factory)) if self.cfg[nms.ALGORITHM][
nms.PILE_OBSERVABILITY] == nms.ALL else 4
self.act_dim = 4 # The 4 movement directions
self.agents = [PolicyGradient(self.factory, agent_id=i, obs_dim=self.obs_dim, act_dim=self.act_dim) for i in
self.agents = [PolicyGradient(self.factory, seed=seed, gamma=self.gamma, agent_id=i, obs_dim=self.obs_dim, act_dim=self.act_dim) for i in
range(self.n_agents)]
if self.cfg[nms.ENV][nms.SAVE_AND_LOG]:
# Define study_out_path and check if it exists
base_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the script
study_out_path = os.path.join(base_dir, '../../../study_out')
study_out_path = os.path.abspath(study_out_path)
study_out_path = get_study_out_path()
if not os.path.exists(study_out_path):
raise FileNotFoundError(f"The directory {study_out_path} does not exist.")
@@ -62,56 +75,86 @@ class A2C:
# Save settings in results folder
save_configs(self.results_path, self.cfg, self.factory.conf, self.eval_factory.conf)
def set_cfg(self, eval=False):
if eval:
self.cfg = self.eval_cfg
else:
self.cfg = self.train_cfg
def load_agents(self, runs_list):
def load_agents(self, config_name, runs_list):
""" Initialize networks with parameters of already trained agents """
for idx, run in enumerate(runs_list):
run_path = f"./study_out/{run}"
self.agents[idx].pi.load_model_parameters(f"{run_path}/PolicyNet_model_parameters.pth")
self.agents[idx].vf.load_model_parameters(f"{run_path}/ValueNet_model_parameters.pth")
if len(runs_list) == 0 or runs_list is None:
if config_name == "coin_quadrant":
for idx in range(self.n_agents):
self.agents[idx].pi.load_model_parameters(f"{get_agent_models_path()}/PolicyNet_model_parameters_coin_quadrant.pth")
self.agents[idx].vf.load_model_parameters(f"{get_agent_models_path()}/ValueNet_model_parameters_coin_quadrant.pth")
elif config_name == "two_rooms":
for idx in range(self.n_agents):
self.agents[idx].pi.load_model_parameters(f"{get_agent_models_path()}/PolicyNet_model_parameters_two_rooms_agent{idx+1}.pth")
self.agents[idx].vf.load_model_parameters(f"{get_agent_models_path()}/ValueNet_model_parameters_two_rooms_agent{idx+1}.pth")
else:
print("No such config does exist! Abort...")
else:
for idx, run in enumerate(runs_list):
run_path = f"./study_out/{run}"
self.agents[idx].pi.load_model_parameters(f"{run_path}/PolicyNet_model_parameters.pth")
self.agents[idx].vf.load_model_parameters(f"{run_path}/ValueNet_model_parameters.pth")
@torch.no_grad()
def train_loop(self):
""" Function for training agents """
env = self.factory
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
n_steps, max_steps = [self.train_cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
global_steps, episode = 0, 0
indices = distribute_indices(env, self.cfg, self.n_agents)
indices = distribute_indices(env, self.train_cfg, self.n_agents)
coin_piles_positions = get_coin_piles_positions(env)
target_pile = [partition[0] for partition in
indices] # list of pointers that point to the current target pile for each agent
collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
low_change_phase_start_episode = -1
episode_rewards_development = []
return_change_development = []
pbar = tqdm(total=max_steps)
while global_steps < max_steps:
loop_condition = True if self.train_cfg[nms.ALGORITHM][nms.EARLY_STOPPING] else global_steps < max_steps
while loop_condition:
_ = env.reset()
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
if self.train_cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
set_agents_spawnpoints(env, self.n_agents)
ordered_coin_piles = get_ordered_coin_piles(env, collected_coin_piles, self.cfg, self.n_agents)
ordered_coin_piles = get_ordered_coin_piles(env, collected_coin_piles, self.train_cfg, self.n_agents)
# Reset current target pile at episode begin if all piles have to be collected in one episode
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.ALL:
if self.train_cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.ALL:
target_pile = [partition[0] for partition in indices]
collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
episode_rewards_development.append([])
# Supply each agent with its local observation
obs = transform_observations(env, ordered_coin_piles, target_pile, self.cfg, self.n_agents)
done, rew_log = [False] * self.n_agents, 0
obs = transform_observations(env, ordered_coin_piles, target_pile, self.train_cfg, self.n_agents)
done, ep_return = [False] * self.n_agents, 0
if self.train_cfg[nms.ALGORITHM][nms.EARLY_STOPPING]:
if len(return_change_development) > self.train_cfg[nms.ALGORITHM][
nms.LAST_N_EPISODES] and low_change_phase_start_episode == -1 and has_low_change_phase_started(
return_change_development, self.train_cfg[nms.ALGORITHM][nms.LAST_N_EPISODES],
self.train_cfg[nms.ALGORITHM][nms.MEAN_TARGET_CHANGE]):
low_change_phase_start_episode = len(return_change_development)
print(low_change_phase_start_episode)
# Check if requirements for early stopping are met
if low_change_phase_start_episode != -1 and significant_deviation(return_change_development, low_change_phase_start_episode):
print(f"Early Stopping in Episode: {global_steps} because of significant deviation.")
break
if low_change_phase_start_episode != -1 and (len(return_change_development) - low_change_phase_start_episode) >= 1000:
print(f"Early Stopping in Episode: {global_steps} because of episode time limit")
break
if low_change_phase_start_episode != -1 and global_steps >= max_steps:
print(f"Early Stopping in Episode: {global_steps} because of global steps time limit")
break
while not all(done):
action = self.use_door_or_move(env, obs, collected_coin_piles) \
if nms.DOORS in env.state.entities.keys() else self.get_actions(obs)
_, next_obs, reward, done, info = env.step(action)
next_obs = transform_observations(env, ordered_coin_piles, target_pile, self.cfg, self.n_agents)
next_obs = transform_observations(env, ordered_coin_piles, target_pile, self.train_cfg, self.n_agents)
# Handle case where agent is on field with coin
reward, done = self.handle_coin(env, collected_coin_piles, ordered_coin_piles, target_pile, indices,
reward, done)
reward, done, self.train_cfg)
if n_steps != 0 and (global_steps + 1) % n_steps == 0: done = True
@@ -122,50 +165,67 @@ class A2C:
agent._episode[-1] = (next_obs[ag_i], action[ag_i], reward[ag_i], agent._episode[-1][-1])
# Visualize state update
if self.cfg[nms.ENV][nms.TRAIN_RENDER]: env.render()
if self.train_cfg[nms.ENV][nms.TRAIN_RENDER]: env.render()
obs = next_obs
if all(done): handle_finished_episode(obs, self.agents, self.cfg)
global_steps += 1
rew_log += sum(reward)
episode_rewards_development[-1].extend(reward)
if global_steps >= max_steps: break
if all(done):
handle_finished_episode(obs, self.agents, self.train_cfg)
break
self.reward_development.append(rew_log)
if global_steps >= max_steps: break
return_change_development.append(
sum(episode_rewards_development[-1]) - sum(episode_rewards_development[-2])
if len(episode_rewards_development) > 1 else 0.0)
episode += 1
pbar.update(global_steps - pbar.n)
pbar.close()
if self.cfg[nms.ENV][nms.SAVE_AND_LOG]:
plot_reward_development(self.reward_development, self.results_path)
create_info_maps(env, get_all_observations(env, self.cfg, self.n_agents),
if self.train_cfg[nms.ENV][nms.SAVE_AND_LOG]:
return_development = [np.sum(rewards) for rewards in episode_rewards_development]
discounted_return_development = [np.sum([reward * pow(self.gamma, i) for i, reward in enumerate(ep_rewards)]) for ep_rewards in episode_rewards_development]
plot_return_development(return_development, self.results_path)
plot_return_development(discounted_return_development, self.results_path, discounted=True)
plot_return_development_change(return_change_development, self.results_path)
create_info_maps(env, get_all_observations(env, self.train_cfg, self.n_agents),
get_coin_piles_positions(env), self.results_path, self.agents, self.act_dim, self)
metrics_data = {"episode_rewards_development": episode_rewards_development,
"return_development": return_development,
"discounted_return_development": discounted_return_development,
"return_change_development": return_change_development}
with open(f"{self.results_path}/metrics", "wb") as pickle_file:
pickle.dump(metrics_data, pickle_file)
save_agent_models(self.results_path, self.agents)
plot_action_maps(env, [self], self.results_path)
@torch.inference_mode(True)
def eval_loop(self, n_episodes):
def eval_loop(self, config_name, n_episodes):
""" Function for performing inference """
env = self.eval_factory
self.set_cfg(eval=True)
episode, results = 0, []
coin_piles_positions = get_coin_piles_positions(env)
indices = distribute_indices(env, self.cfg, self.n_agents)
if config_name == "coin_quadrant": print("Coin Piles positions", coin_piles_positions)
indices = distribute_indices(env, self.eval_cfg, self.n_agents)
target_pile = [partition[0] for partition in
indices] # list of pointers that point to the current target pile for each agent
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.DISTRIBUTED:
if self.eval_cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.DISTRIBUTED:
collected_coin_piles = [{coin_piles_positions[idx]: False for idx in indices[i]} for i in
range(self.n_agents)]
else: collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
else:
collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
collected_coin_piles_per_step = []
while episode < n_episodes:
_ = env.reset()
set_agents_spawnpoints(env, self.n_agents)
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
if self.eval_cfg[nms.ENV][nms.EVAL_RENDER]:
# Don't render auxiliary piles
if self.cfg[nms.ALGORITHM][nms.AUXILIARY_PILES]:
if self.eval_cfg[nms.ALGORITHM][nms.AUXILIARY_PILES]:
auxiliary_piles = [pile for idx, pile in enumerate(env.state.entities[nms.COIN_PILES]) if
idx % 2 == 0]
for pile in auxiliary_piles:
@@ -174,19 +234,23 @@ class A2C:
env._renderer.fps = 5 # Slow down agent movement
# Reset current target pile at episode begin if all piles have to be collected in one episode
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] in [nms.ALL, nms.DISTRIBUTED, nms.SHARED]:
if self.eval_cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] in [nms.ALL, nms.DISTRIBUTED, nms.SHARED]:
target_pile = [partition[0] for partition in indices]
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.DISTRIBUTED:
if self.eval_cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.DISTRIBUTED:
collected_coin_piles = [{coin_piles_positions[idx]: False for idx in indices[i]} for i in
range(self.n_agents)]
else: collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
else:
collected_coin_piles = [{pos: False for pos in coin_piles_positions} for _ in range(self.n_agents)]
ordered_coin_piles = get_ordered_coin_piles(env, collected_coin_piles, self.cfg, self.n_agents)
ordered_coin_piles = get_ordered_coin_piles(env, collected_coin_piles, self.eval_cfg, self.n_agents)
# Supply each agent with its local observation
obs = transform_observations(env, ordered_coin_piles, target_pile, self.cfg, self.n_agents)
obs = transform_observations(env, ordered_coin_piles, target_pile, self.eval_cfg, self.n_agents)
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
collected_coin_piles_per_step.append([])
ep_steps = 0
while not all(done):
action = self.use_door_or_move(env, obs, collected_coin_piles, det=True) \
if nms.DOORS in env.state.entities.keys() else self.execute_policy(obs, env,
@@ -195,20 +259,44 @@ class A2C:
# Handle case where agent is on field with coin
reward, done = self.handle_coin(env, collected_coin_piles, ordered_coin_piles, target_pile, indices,
reward, done)
reward, done, self.eval_cfg)
ordered_coin_piles = get_ordered_coin_piles(env, collected_coin_piles, self.eval_cfg, self.n_agents)
# Get transformed next_obs that might have been updated because of handle_coin
next_obs = transform_observations(env, ordered_coin_piles, target_pile, self.cfg, self.n_agents)
next_obs = transform_observations(env, ordered_coin_piles, target_pile, self.eval_cfg, self.n_agents)
done = [done] * self.n_agents if isinstance(done, bool) else done
if self.cfg[nms.ENV][nms.EVAL_RENDER]: env.render()
if self.eval_cfg[nms.ENV][nms.EVAL_RENDER]: env.render()
obs = next_obs
episode += 1
# Count the overall number of cleaned coin piles in each step
collected_piles = 0
for dict in collected_coin_piles:
for value in dict.values():
if value:
collected_piles += 1
collected_coin_piles_per_step[-1].append(collected_piles)
# -------------------------------------- HELPER FUNCTIONS ------------------------------------------------- #
ep_steps += 1
episode += 1
print("Number of environment steps:", ep_steps)
if config_name == "coin_quadrant":
print("Collected coins per step:", collected_coin_piles_per_step)
else:
# For the RL agent, we encode the flags internally as coins as well.
# Also, we have to subtract the auxiliary pile in the emergence prevention mechanism case
print("Reached flags per step:", [[max(0, coin_pile - 1) for coin_pile in ele] for ele in collected_coin_piles_per_step])
if self.eval_cfg[nms.ENV][nms.SAVE_AND_LOG]:
metrics_data = {"collected_coin_piles_per_step": collected_coin_piles_per_step}
with open(f"{self.results_path}/metrics", "wb") as pickle_file:
pickle.dump(metrics_data, pickle_file)
########## Helper functions ########
def get_actions(self, observations) -> ListOrTensor:
""" Given local observations, get actions for both agents """
@@ -247,14 +335,18 @@ class A2C:
a.name == nms.USE_DOOR))
# Don't include action in agent experience
else:
if det: action.append(int(agent.pi(agent_obs, det=True)[0]))
else: action.append(int(agent.step(agent_obs)))
if det:
action.append(int(agent.pi(agent_obs, det=True)[0]))
else:
action.append(int(agent.step(agent_obs)))
else:
if det: action.append(int(agent.pi(agent_obs, det=True)[0]))
else: action.append(int(agent.step(agent_obs)))
if det:
action.append(int(agent.pi(agent_obs, det=True)[0]))
else:
action.append(int(agent.step(agent_obs)))
return action
def handle_coin(self, env, collected_coin_piles, ordered_coin_piles, target_pile, indices, reward, done):
def handle_coin(self, env, collected_coin_piles, ordered_coin_piles, target_pile, indices, reward, done, cfg):
""" Check if agent moved on field with coin. If that is the case collect coin automatically """
agents_positions = get_agents_positions(env, self.n_agents)
coin_piles_positions = get_coin_piles_positions(env)
@@ -269,10 +361,10 @@ class A2C:
reward[idx] += 50
collected_coin_piles[idx][pos] = True
# Set pointer to next coin pile
update_target_pile(env, idx, target_pile, indices, self.cfg)
update_target_pile(env, idx, target_pile, indices, cfg)
update_ordered_coin_piles(idx, collected_coin_piles, ordered_coin_piles, env,
self.cfg, self.n_agents)
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.SINGLE:
cfg, self.n_agents)
if cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.SINGLE:
done = True
if all(collected_coin_piles[idx].values()):
# Reset collected_coin_piles indicator
@@ -285,11 +377,15 @@ class A2C:
# Indicate that renderer can hide coin pile
coin_at_position = env.state[nms.COIN_PILES].by_pos(pos)
coin_at_position[0].set_new_amount(0)
"""
coin_at_position = env.state[nms.COIN_PILES].by_pos(pos)[0]
env.state[nms.COIN_PILES].delete_env_object(coin_at_position)
"""
if self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] in [nms.ALL, nms.DISTRIBUTED]:
if cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] in [nms.ALL, nms.DISTRIBUTED]:
if all([all(collected_coin_piles[i].values()) for i in range(self.n_agents)]):
done = True
elif self.cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.SHARED:
elif cfg[nms.ALGORITHM][nms.PILE_ALL_DONE] == nms.SHARED:
# End episode if both agents together have collected all coin piles
if all(get_all_collected_coin_piles(coin_piles_positions, collected_coin_piles, self.n_agents).values()):
done = True

View File

@@ -1,755 +0,0 @@
import copy
import os
import random
import imageio # requires ffmpeg install on operating system and imageio-ffmpeg package for python
from scipy import signal
import matplotlib.pyplot as plt
import torch
from typing import Union, List, Dict
import numpy as np
from torch.distributions import Categorical
from marl_factory_grid.algorithms.marl.base_a2c import PolicyGradient, cumulate_discount
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.utils import add_env_props, instantiate_class
from pathlib import Path
from collections import deque
from marl_factory_grid.environment.actions import Noop
from marl_factory_grid.modules import Clean, DoorUse
from marl_factory_grid.utils.plotting.plot_single_runs import plot_action_maps
class Names:
REWARD = 'reward'
DONE = 'done'
ACTION = 'action'
OBSERVATION = 'observation'
LOGITS = 'logits'
HIDDEN_ACTOR = 'hidden_actor'
HIDDEN_CRITIC = 'hidden_critic'
AGENT = 'agent'
ENV = 'env'
ENV_NAME = 'env_name'
N_AGENTS = 'n_agents'
ALGORITHM = 'algorithm'
MAX_STEPS = 'max_steps'
N_STEPS = 'n_steps'
BUFFER_SIZE = 'buffer_size'
CRITIC = 'critic'
BATCH_SIZE = 'bnatch_size'
N_ACTIONS = 'n_actions'
TRAIN_RENDER = 'train_render'
EVAL_RENDER = 'eval_render'
nms = Names
ListOrTensor = Union[List, torch.Tensor]
class A2C:
def __init__(self, train_cfg, eval_cfg):
self.factory = add_env_props(train_cfg)
self.eval_factory = add_env_props(eval_cfg)
self.__training = True
self.train_cfg = train_cfg
self.eval_cfg = eval_cfg
self.cfg = train_cfg
self.n_agents = train_cfg[nms.AGENT][nms.N_AGENTS]
self.setup()
self.reward_development = []
self.action_probabilities = {agent_idx:[] for agent_idx in range(self.n_agents)}
def setup(self):
dirt_piles_positions = [self.factory.state.entities['DirtPiles'][pile_idx].pos for pile_idx in
range(len(self.factory.state.entities['DirtPiles']))]
if self.cfg[nms.ALGORITHM]["pile-observability"] == "all":
obs_dim = 2 + 2*len(dirt_piles_positions)
else:
obs_dim = 4
self.obs_dim = obs_dim
self.act_dim = 4
# act_dim=4, because we want the agent to only learn a routing problem
self.agents = [PolicyGradient(self.factory, agent_id=i, obs_dim=obs_dim, act_dim=self.act_dim) for i in range(self.n_agents)]
if self.cfg[nms.ENV]["save_and_log"]:
# Create results folder
runs = os.listdir("../study_out/")
run_numbers = [int(run[3:]) for run in runs if run[:3] == "run"]
next_run_number = max(run_numbers)+1 if run_numbers else 0
self.results_path = f"../study_out/run{next_run_number}"
os.mkdir(self.results_path)
# Save settings in results folder
self.save_configs()
if self.cfg[nms.ENV]["record"]:
self.recorder = imageio.get_writer(f'{self.results_path}/pygame_recording.mp4', fps=5)
def set_cfg(self, eval=False):
if eval:
self.cfg = self.eval_cfg
else:
self.cfg = self.train_cfg
@classmethod
def _as_torch(cls, x):
if isinstance(x, np.ndarray):
return torch.from_numpy(x)
elif isinstance(x, List):
return torch.tensor(x)
elif isinstance(x, (int, float)):
return torch.tensor([x])
return x
def get_actions(self, observations) -> ListOrTensor:
# Given an observation, get actions for both agents
actions = [agent.step(self._as_torch(observations[ag_i]).view(-1).to(torch.float32)) for ag_i, agent in enumerate(self.agents)]
return actions
def execute_policy(self, observations, env, cleaned_dirt_piles) -> ListOrTensor:
# Use deterministic policy for inference
actions = [agent.policy(self._as_torch(observations[ag_i]).view(-1).to(torch.float32)) for ag_i, agent in enumerate(self.agents)]
for agent_idx in range(self.n_agents):
if all(cleaned_dirt_piles[agent_idx].values()):
actions[agent_idx] = np.array(next(action_i for action_i, a in enumerate(env.state["Agent"][agent_idx].actions) if a.name == "Noop"))
return actions
def transform_observations(self, env, ordered_dirt_piles, target_pile):
""" Assumes that agent has observations -DirtPiles and -Self """
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
if self.cfg[nms.ALGORITHM]["pile-observability"] == "all":
trans_obs = [torch.zeros(2+2*len(ordered_dirt_piles[0])) for _ in range(len(agent_positions))]
else:
# Only show current target pile
trans_obs = [torch.zeros(4) for _ in range(len(agent_positions))]
for i, pos in enumerate(agent_positions):
agent_x, agent_y = pos[0], pos[1]
trans_obs[i][0] = agent_x
trans_obs[i][1] = agent_y
idx = 2
if self.cfg[nms.ALGORITHM]["pile-observability"] == "all":
for pile_pos in ordered_dirt_piles[i]:
trans_obs[i][idx] = pile_pos[0]
trans_obs[i][idx + 1] = pile_pos[1]
idx += 2
else:
trans_obs[i][2] = ordered_dirt_piles[i][target_pile[i]][0]
trans_obs[i][3] = ordered_dirt_piles[i][target_pile[i]][1]
return trans_obs
def get_all_observations(self, env):
dirt_piles_positions = [env.state.entities['DirtPiles'][pile_idx].pos for pile_idx in
range(len(env.state.entities['DirtPiles']))]
if self.cfg[nms.ALGORITHM]["pile-observability"] == "all":
obs = [torch.zeros(2 + 2 * len(dirt_piles_positions))]
observations = [[]]
# Fill in pile positions
idx = 2
for pile_pos in dirt_piles_positions:
obs[0][idx] = pile_pos[0]
obs[0][idx + 1] = pile_pos[1]
idx += 2
else:
# Have multiple observation layers of the map for each dirt pile one
obs = [torch.zeros(4) for _ in range(self.n_agents) for _ in dirt_piles_positions]
observations = [[] for _ in dirt_piles_positions]
for idx, pile_pos in enumerate(dirt_piles_positions):
obs[idx][2] = pile_pos[0]
obs[idx][3] = pile_pos[1]
valid_agent_positions = env.state.entities.floorlist
#observations_shape = (max(t[0] for t in valid_agent_positions) + 2, max(t[1] for t in valid_agent_positions) + 2)
for idx, pos in enumerate(valid_agent_positions):
for obs_layer in range(len(obs)):
observation = copy.deepcopy(obs[obs_layer])
observation[0] = pos[0]
observation[1] = pos[1]
observations[obs_layer].append(observation)
return observations
def get_dirt_piles_positions(self, env):
return [env.state.entities['DirtPiles'][pile_idx].pos for pile_idx in range(len(env.state.entities['DirtPiles']))]
def get_ordered_dirt_piles(self, env, cleaned_dirt_piles, target_pile):
""" Each agent can have it's individual pile order """
ordered_dirt_piles = [[] for _ in range(self.n_agents)]
dirt_pile_positions = self.get_dirt_piles_positions(env)
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
for agent_idx in range(self.n_agents):
if self.cfg[nms.ALGORITHM]["pile-order"] in ["fixed", "agents"]:
ordered_dirt_piles[agent_idx] = dirt_pile_positions
elif self.cfg[nms.ALGORITHM]["pile-order"] == "random":
ordered_dirt_piles[agent_idx] = dirt_pile_positions
random.shuffle(ordered_dirt_piles)
elif self.cfg[nms.ALGORITHM]["pile-order"] == "none":
ordered_dirt_piles[agent_idx] = None
elif self.cfg[nms.ALGORITHM]["pile-order"] in ["smart", "dynamic"]:
# Calculate distances for remaining unvisited dirt piles
remaining_target_piles = [pos for pos, value in cleaned_dirt_piles[agent_idx].items() if not value]
pile_distances = {pos:0 for pos in remaining_target_piles}
agent_pos = agent_positions[agent_idx]
for pos in remaining_target_piles:
pile_distances[pos] = np.abs(agent_pos[0] - pos[0]) + np.abs(agent_pos[1] - pos[1])
if self.cfg[nms.ALGORITHM]["pile-order"] == "smart":
# Check if there is an agent in line with any of the remaining dirt piles
for pile_pos in remaining_target_piles:
for other_pos in agent_positions:
if other_pos != agent_pos:
if agent_pos[0] == other_pos[0] == pile_pos[0] or agent_pos[1] == other_pos[1] == pile_pos[1]:
# Get the line between the agent and the goal
path = self.bresenham(agent_pos[0], agent_pos[1], pile_pos[0], pile_pos[1])
# Check if the entity lies on the path between the agent and the goal
if other_pos in path:
pile_distances[pile_pos] += np.abs(agent_pos[0] - other_pos[0]) + np.abs(agent_pos[1] - other_pos[1])
sorted_pile_distances = dict(sorted(pile_distances.items(), key=lambda item: item[1]))
# Insert already visited dirt piles
ordered_dirt_piles[agent_idx] = [pos for pos in dirt_pile_positions if pos not in remaining_target_piles]
# Fill up with sorted positions
for pos in sorted_pile_distances.keys():
ordered_dirt_piles[agent_idx].append(pos)
else:
print("Not a valid pile order option.")
exit()
return ordered_dirt_piles
def bresenham(self, x0, y0, x1, y1):
"""Bresenham's line algorithm to get the coordinates of a line between two points."""
dx = np.abs(x1 - x0)
dy = np.abs(y1 - y0)
sx = 1 if x0 < x1 else -1
sy = 1 if y0 < y1 else -1
err = dx - dy
coordinates = []
while True:
coordinates.append((x0, y0))
if x0 == x1 and y0 == y1:
break
e2 = 2 * err
if e2 > -dy:
err -= dy
x0 += sx
if e2 < dx:
err += dx
y0 += sy
return coordinates
def update_ordered_dirt_piles(self, agent_idx, cleaned_dirt_piles, ordered_dirt_piles, env, target_pile):
# Only update ordered_dirt_pile for agent that reached its target pile
updated_ordered_dirt_piles = self.get_ordered_dirt_piles(env, cleaned_dirt_piles, target_pile)
for i in range(len(ordered_dirt_piles[agent_idx])):
ordered_dirt_piles[agent_idx][i] = updated_ordered_dirt_piles[agent_idx][i]
def distribute_indices(self, env):
indices = []
n_dirt_piles = len(self.get_dirt_piles_positions(env))
if n_dirt_piles == 1 or self.cfg[nms.ALGORITHM]["pile-order"] in ["fixed", "random", "none", "dynamic", "smart"]:
indices = [[0] for _ in range(self.n_agents)]
else:
base_count = n_dirt_piles // self.n_agents
remainder = n_dirt_piles % self.n_agents
start_index = 0
for i in range(self.n_agents):
# Add an extra index to the first 'remainder' objects
end_index = start_index + base_count + (1 if i < remainder else 0)
indices.append(list(range(start_index, end_index)))
start_index = end_index
# Static form: auxiliary pile, primary pile, auxiliary pile, ...
# -> Starting with index 0 even piles are auxiliary piles, odd piles are primary piles
if self.cfg[nms.ALGORITHM]["auxiliary_piles"] and "Doors" in env.state.entities.keys():
door_positions = [door.pos for door in env.state.entities["Doors"]]
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
distances = {door_pos:[] for door_pos in door_positions}
# Calculate distance of every agent to every door
for door_pos in door_positions:
for agent_pos in agent_positions:
distances[door_pos].append(np.abs(door_pos[0] - agent_pos[0]) + np.abs(door_pos[1] - agent_pos[1]))
def duplicate_indices(lst, item):
return [i for i, x in enumerate(lst) if x == item]
# Get agent indices of agents with same distance to door
affected_agents = {door_pos:{} for door_pos in door_positions}
for door_pos in distances.keys():
dist = distances[door_pos]
dist_set = set(dist)
for d in dist_set:
affected_agents[door_pos][str(d)] = duplicate_indices(dist, d)
# TODO: Make generic for multiple doors
updated_indices = []
if len(affected_agents[door_positions[0]]) == 0:
# Remove auxiliary piles for all agents
updated_indices = [[ele for ele in lst if ele % 2 != 0] for lst in indices]
else:
for distance, agent_indices in affected_agents[door_positions[0]].items():
# Pick random agent to keep auxiliary pile and remove it for all others
#selected_agent = np.random.choice(agent_indices)
selected_agent = 0
for agent_idx in agent_indices:
if agent_idx == selected_agent:
updated_indices.append(indices[agent_idx])
else:
updated_indices.append([ele for ele in indices[agent_idx] if ele % 2 != 0])
indices = updated_indices
return indices
def update_target_pile(self, env, agent_idx, target_pile, indices):
if self.cfg[nms.ALGORITHM]["pile-order"] in ["fixed", "random", "none", "dynamic", "smart"]:
if target_pile[agent_idx] + 1 < len(self.get_dirt_piles_positions(env)):
target_pile[agent_idx] += 1
else:
target_pile[agent_idx] = 0
else:
if target_pile[agent_idx] + 1 in indices[agent_idx]:
target_pile[agent_idx] += 1
def door_is_close(self, env, agent_idx):
neighbourhood = [y for x in env.state.entities.neighboring_positions(env.state["Agent"][agent_idx].pos)
for y in env.state.entities.pos_dict[x] if "Door" in y.name]
if neighbourhood:
return neighbourhood[0]
def use_door_or_move(self, env, obs, cleaned_dirt_piles, target_pile, det=False):
action = []
for agent_idx, agent in enumerate(self.agents):
agent_obs = self._as_torch((obs)[agent_idx]).view(-1).to(torch.float32)
# If agent already reached its target
if all(cleaned_dirt_piles[agent_idx].values()):
action.append(next(action_i for action_i, a in enumerate(env.state["Agent"][agent_idx].actions) if a.name == "Noop"))
if not det:
# Include agent experience entry manually
agent._episode.append((None, None, None, agent.vf(agent_obs)))
else:
if door := self.door_is_close(env, agent_idx):
if door.is_closed:
action.append(next(action_i for action_i, a in enumerate(env.state["Agent"][agent_idx].actions) if a.name == "use_door"))
# Don't include action in agent experience
else:
if det:
action.append(int(agent.pi(agent_obs, det=True)[0]))
else:
action.append(int(agent.step(agent_obs)))
else:
if det:
action.append(int(agent.pi(agent_obs, det=True)[0]))
else:
action.append(int(agent.step(agent_obs)))
return action
def reward_distance(self, env, obs, target_pile, reward):
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
# Give a negative reward for every step that keeps agent from getting closer to currently selected target pile/ closest pile
for idx, pos in enumerate(agent_positions):
last_pos = (int(obs[idx][0]), int(obs[idx][1].item()))
target_pile_pos = self.get_dirt_piles_positions(env)[target_pile[idx]]
last_distance = np.abs(target_pile_pos[0] - last_pos[0]) + np.abs(target_pile_pos[1] - last_pos[1])
new_distance = np.abs(target_pile_pos[0] - pos[0]) + np.abs(target_pile_pos[1] - pos[1])
if new_distance >= last_distance:
reward[idx] -= 0.05 # 0.05
return reward
def punish_entering_same_field(self, next_obs, passed_fields, reward):
# Give a high negative reward if agent enters same field twice
for idx in range(self.n_agents):
if (next_obs[idx][0], next_obs[idx][1]) in passed_fields[idx]:
reward[idx] += -0.1
else:
passed_fields[idx].append((next_obs[idx][0], next_obs[idx][1]))
def handle_dirt_quadrant_observation_bugs(self, obs, env):
try:
# Check that dirt position and amount are still correct
assert np.where(obs[0][0] == 0.5)[0][0] == 1 and np.where(obs[0][0] == 0.5)[0][0] == 1
except:
print("Missing dirt pile")
# Manually place dirt on defined position
obs[0][0][1][1] = 0.5
try:
# Check that self still returns a valid agent position on the map
assert np.where(obs[0][1] == 1)[0][0] and np.where(obs[0][1] == 1)[1][0]
except:
# Place agent manually in obs object on last known position
x, y = env.state.moving_entites[0].pos[0], env.state.moving_entites[0].pos[1]
obs[0][1][x][y] = 1
print("Missing agent position")
def get_all_cleaned_dirt_piles(self, dirt_piles_positions, cleaned_dirt_piles):
meta_cleaned_dirt_piles = {pos: False for pos in dirt_piles_positions}
for agent_idx in range(self.n_agents):
for (pos, cleaned) in cleaned_dirt_piles[agent_idx].items():
if cleaned:
meta_cleaned_dirt_piles[pos] = True
return meta_cleaned_dirt_piles
def handle_dirt(self, env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, indices, reward, done):
# Check if agent moved on field with dirt. If that is the case collect dirt automatically
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
dirt_piles_positions = self.get_dirt_piles_positions(env)
if any([True for pos in agent_positions if pos in dirt_piles_positions]):
# Do Noop for agent that does not collect dirt
"""action = [np.array(5), np.array(5)]
# Execute real step in environment
for idx, pos in enumerate(agent_positions):
if pos in cleaned_dirt_piles[idx].keys() and not cleaned_dirt_piles[idx][pos]:
action[idx] = np.array(4)
# Collect dirt
_, next_obs, reward, done, info = env.step(action)
cleaned_dirt_piles[idx][pos] = True
break"""
# Only simulate collecting the dirt
for idx, pos in enumerate(agent_positions):
if pos in cleaned_dirt_piles[idx].keys() and not cleaned_dirt_piles[idx][pos]:
# print(env.state.entities["Agent"][idx], pos, idx, target_pile, ordered_dirt_piles)
# If dirt piles should be cleaned in a specific order
if ordered_dirt_piles[idx]:
if pos == ordered_dirt_piles[idx][target_pile[idx]]:
reward[idx] += 50 # 1
cleaned_dirt_piles[idx][pos] = True
# Set pointer to next dirt pile
self.update_target_pile(env, idx, target_pile, indices)
self.update_ordered_dirt_piles(idx, cleaned_dirt_piles, ordered_dirt_piles, env, target_pile)
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "single":
done = True
if all(cleaned_dirt_piles[idx].values()):
# Reset cleaned_dirt_piles indicator
for pos in dirt_piles_positions:
cleaned_dirt_piles[idx][pos] = False
else:
reward[idx] += 50 # 1
cleaned_dirt_piles[idx][pos] = True
if self.cfg[nms.ALGORITHM]["pile_all_done"] in ["all", "distributed"]:
if all([all(cleaned_dirt_piles[i].values()) for i in range(self.n_agents)]):
done = True
elif self.cfg[nms.ALGORITHM]["pile_all_done"] == "shared":
# End episode if both agents together have cleaned all dirt piles
if all(self.get_all_cleaned_dirt_piles(dirt_piles_positions, cleaned_dirt_piles).values()):
done = True
return reward, done
def handle_finished_episode(self, obs):
with torch.inference_mode(False):
for ag_i, agent in enumerate(self.agents):
# Get states, actions, rewards and values from rollout buffer
data = agent.finish_episode()
# Chunk episode data, such that there will be no memory failure for very long episodes
chunks = self.split_into_chunks(data)
for (s, a, R, V) in chunks:
# Calculate discounted return and advantage
G = cumulate_discount(R, self.cfg[nms.ALGORITHM]["gamma"])
if self.cfg[nms.ALGORITHM]["advantage"] == "Reinforce":
A = G
elif self.cfg[nms.ALGORITHM]["advantage"] == "Advantage-AC":
A = G - V # Actor-Critic Advantages
elif self.cfg[nms.ALGORITHM]["advantage"] == "TD-Advantage-AC":
with torch.no_grad():
A = R + self.cfg[nms.ALGORITHM]["gamma"] * np.append(V[1:], agent.vf(
self._as_torch(obs[ag_i]).view(-1).to(
torch.float32)).numpy()) - V # TD Actor-Critic Advantages
else:
print("Not a valid advantage option.")
exit()
rollout = (torch.tensor(x.copy()).to(torch.float32) for x in (s, a, G, A))
# Update policy and value net of agent with experience from rollout buffer
agent.train(*rollout)
def split_into_chunks(self, data_tuple):
result = [data_tuple]
chunk_size = self.cfg[nms.ALGORITHM]["chunk-episode"]
if chunk_size > 0:
# Get the maximum length of the lists in the tuple to handle different lengths
max_length = max(len(lst) for lst in data_tuple)
# Prepare a list to store the result
result = []
# Split each list into chunks and add them to the result
for i in range(0, max_length, chunk_size):
# Create a sublist containing the ith chunk from each list
sublist = [lst[i:i + chunk_size] for lst in data_tuple if i < len(lst)]
result.append(sublist)
return result
def set_agent_spawnpoint(self, env):
for agent_idx in range(self.n_agents):
agent_name = list(env.state.agents_conf.keys())[agent_idx]
current_pos_pointer = env.state.agents_conf[agent_name]["pos_pointer"]
# Making the reset dependent on the number of spawnpoints and not the number of dirtpiles allows
# for having multiple subsequent spawnpoints with the same target pile
if current_pos_pointer == len(env.state.agents_conf[agent_name]['positions']) - 1:
env.state.agents_conf[agent_name]["pos_pointer"] = 0
else:
env.state.agents_conf[agent_name]["pos_pointer"] += 1
@torch.no_grad()
def train_loop(self):
env = self.factory
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
global_steps, episode = 0, 0
indices = self.distribute_indices(env)
dirt_piles_positions = self.get_dirt_piles_positions(env)
used_actions = {i:0 for i in range(len(env.state.entities["Agent"][0]._actions))} # Assume both agents have the same actions
target_pile = [partition[0] for partition in indices] # pointer that points to the target pile for each agent. (point to same pile, point to different piles)
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)] # Have own dictionary for each agent
while global_steps < max_steps:
print(global_steps)
obs = env.reset() # !!!!!!!!Commented seems to work better? Only if a fixed spawnpoint is given
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
self.set_agent_spawnpoint(env)
ordered_dirt_piles = self.get_ordered_dirt_piles(env, cleaned_dirt_piles, target_pile)
# Reset current target pile at episode begin if all piles have to be cleaned in one episode
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "all":
target_pile = [partition[0] for partition in indices]
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)]
"""passed_fields = [[] for _ in range(self.n_agents)]"""
"""obs = list(obs.values())"""
obs = self.transform_observations(env, ordered_dirt_piles, target_pile)
done, rew_log = [False] * self.n_agents, 0
print("Agents spawnpoints:", [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)])
print("Agents target piles:", target_pile)
print("Agents initial observation:", obs)
print("Agents cleaned dirt piles:", cleaned_dirt_piles)
# Add Clean and Noop actions to agent actions so that they can be executed when the agent comes on a dirpile
"""for i in range(self.n_agents):
self.factory.state['Agent'][i].actions.extend([Clean(), Noop()])"""
while not all(done):
# 0="North", 1="East", 2="South", 3="West", 4="Clean", 5="Noop"
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile) \
if "Doors" in env.state.entities.keys() else self.get_actions(obs)
used_actions[int(action[0])] += 1
_, next_obs, reward, done, info = env.step(action)
if done:
print("DoneAtMaxStepsReached:", len(self.agents[0]._episode))
next_obs = self.transform_observations(env, ordered_dirt_piles, target_pile)
# Add small negative reward if agent has moved away from the target_pile
# reward = self.reward_distance(env, obs, target_pile, reward)
# Check and handle if agent is on field with dirt. This method can change the observation for the next step.
# If pile_all_done is "single", the episode ends if agents reached its target pile and the new episode begins
# with the updated observation. The observation that is saved to the rollout buffer, which resulted in reaching
# the target pile should not be updated before saving. Thus, the self.transform_observations call must happen
# before this method is called.
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, indices, reward, done)
if n_steps != 0 and (global_steps + 1) % n_steps == 0:
print("max_steps reached")
done = True
done = [done] * self.n_agents if isinstance(done, bool) else done
for ag_i, agent in enumerate(self.agents):
# For forced actions like door opening, we have to call the step function with this action, but
# since we are not allowed to exceed the dimensions range, we can't log the corresponding step info.
if action[ag_i] in range(self.act_dim):
# Add agent results into respective rollout buffers
agent._episode[-1] = (next_obs[ag_i], action[ag_i], reward[ag_i], agent._episode[-1][-1])
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
obs = next_obs
if all(done): self.handle_finished_episode(obs)
global_steps += 1
rew_log += sum(reward)
if global_steps >= max_steps:
break
print(f'reward at episode: {episode} = {rew_log}')
self.reward_development.append(rew_log)
episode += 1
self.plot_reward_development()
if self.cfg[nms.ENV]["save_and_log"]:
self.create_info_maps(env, used_actions)
self.save_agent_models()
plot_action_maps(env, [self], self.results_path)
@torch.inference_mode(True)
def eval_loop(self, n_episodes, render=False):
env = self.eval_factory
self.set_cfg(eval=True)
episode, results = 0, []
dirt_piles_positions = self.get_dirt_piles_positions(env)
indices = self.distribute_indices(env)
target_pile = [partition[0] for partition in indices] # pointer that points to the target pile for each agent. (point to same pile, point to different piles)
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "distributed":
cleaned_dirt_piles = [{dirt_piles_positions[idx]: False for idx in indices[i]} for i in range(self.n_agents)]
else:
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)]
while episode < n_episodes:
obs = env.reset()
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
if self.cfg[nms.ENV]["save_and_log"] and self.cfg[nms.ENV]["record"]:
env.set_recorder(self.recorder)
env.render()
env._renderer.fps = 5
self.set_agent_spawnpoint(env)
"""obs = list(obs.values())"""
# Reset current target pile at episode begin if all piles have to be cleaned in one episode
if self.cfg[nms.ALGORITHM]["pile_all_done"] in ["all", "distributed", "shared"]:
target_pile = [partition[0] for partition in indices]
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "distributed":
cleaned_dirt_piles = [{dirt_piles_positions[idx]: False for idx in indices[i]} for i in range(self.n_agents)]
else:
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)]
ordered_dirt_piles = self.get_ordered_dirt_piles(env, cleaned_dirt_piles, target_pile)
obs = self.transform_observations(env, ordered_dirt_piles, target_pile)
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
# Add Clean and Noop actions to agent actions so that they can be executed when the agent comes on a dirpile
"""for i in range(self.n_agents):
self.factory.state['Agent'][i].actions.extend([Clean(), Noop()])"""
while not all(done):
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile, det=True) \
if "Doors" in env.state.entities.keys() else self.execute_policy(obs, env, cleaned_dirt_piles) # zero exploration
_, next_obs, reward, done, info = env.step(action) # Note that this call seems to flip the lists in indices
if done:
print("DoneAtMaxStepsReached:", len(self.agents[0]._episode))
# Add small negative reward if agent has moved away from the target_pile
# reward = self.reward_distance(env, obs, target_pile, reward)
# Check and handle if agent is on field with dirt
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, indices, reward, done)
# Get transformed next_obs that might have been updated because of self.handle_dirt.
# For eval, where pile_all_done is "all", it's mandatory that the potential change of the target pile
# in the observation, caused by self.handle_dirt, is already considered when the next action is calculated.
next_obs = self.transform_observations(env, ordered_dirt_piles, target_pile)
done = [done] * self.n_agents if isinstance(done, bool) else done
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
env.render()
obs = next_obs
episode += 1
# Properly finalize the video file
if self.cfg[nms.ENV]["save_and_log"] and self.cfg[nms.ENV]["record"]:
self.recorder.close()
def plot_reward_development(self):
smoothed_data = np.convolve(self.reward_development, np.ones(10) / 10, mode='valid')
plt.plot(smoothed_data)
plt.ylim([-10, max(smoothed_data) + 20])
plt.title('Smoothed Reward Development')
plt.xlabel('Episode')
plt.ylabel('Reward')
if self.cfg[nms.ENV]["save_and_log"]:
plt.savefig(f"{self.results_path}/smoothed_reward_development.png")
plt.show()
def save_configs(self):
with open(f"{self.results_path}/MARL_config.txt", "w") as txt_file:
txt_file.write(str(self.cfg))
with open(f"{self.results_path}/train_env_config.txt", "w") as txt_file:
txt_file.write(str(self.factory.conf))
with open(f"{self.results_path}/eval_env_config.txt", "w") as txt_file:
txt_file.write(str(self.eval_factory.conf))
def save_agent_models(self):
for idx, agent in enumerate(self.agents):
agent_name = list(self.factory.state.agents_conf.keys())[idx]
agent.pi.save_model_parameters(self.results_path, agent_name)
agent.vf.save_model_parameters(self.results_path, agent_name)
def load_agents(self, runs_list):
for idx, run in enumerate(runs_list):
run_path = f"../study_out/{run}"
agent_name = list(self.eval_factory.state.agents_conf.keys())[idx]
self.agents[idx].pi.load_model_parameters(f"{run_path}/{agent_name}_PolicyNet_model_parameters.pth")
self.agents[idx].vf.load_model_parameters(f"{run_path}/{agent_name}_ValueNet_model_parameters.pth")
def create_info_maps(self, env, used_actions):
# Create value map
all_valid_observations = self.get_all_observations(env)
dirt_piles_positions = self.get_dirt_piles_positions(env)
with open(f"{self.results_path}/info_maps.txt", "w") as txt_file:
for obs_layer, pos in enumerate(dirt_piles_positions):
observations_shape = (
max(t[0] for t in env.state.entities.floorlist) + 2, max(t[1] for t in env.state.entities.floorlist) + 2)
value_maps = [np.zeros(observations_shape) for _ in self.agents]
likeliest_action = [np.full(observations_shape, np.NaN) for _ in self.agents]
action_probabilities = [np.zeros((observations_shape[0], observations_shape[1], self.act_dim)) for
_ in self.agents]
for obs in all_valid_observations[obs_layer]:
"""obs = self._as_torch(obs).view(-1).to(torch.float32)"""
for idx, agent in enumerate(self.agents):
"""indices = np.where(obs[1] == 1) # Get agent position on grid (1 indicates the position)
x, y = indices[0][0], indices[1][0]"""
x, y = int(obs[0]), int(obs[1])
try:
value_maps[idx][x][y] = agent.vf(obs)
probs = agent.pi.distribution(obs).probs
likeliest_action[idx][x][y] = torch.argmax(probs) # get the likeliest action at the current agent position
action_probabilities[idx][x][y] = probs
except:
pass
txt_file.write("=======Value Maps=======\n")
print("=======Value Maps=======")
for agent_idx, vmap in enumerate(value_maps):
txt_file.write(f"Value map of agent {agent_idx} for target pile {pos}:\n")
print(f"Value map of agent {agent_idx} for target pile {pos}:")
vmap = self._as_torch(vmap).round(decimals=4)
max_digits = max(len(str(vmap.max().item())), len(str(vmap.min().item())))
for idx, row in enumerate(vmap):
txt_file.write(' '.join(f" {elem:>{max_digits + 1}}" for elem in row.tolist()))
txt_file.write("\n")
print(' '.join(f" {elem:>{max_digits + 1}}" for elem in row.tolist()))
txt_file.write("\n")
txt_file.write("=======Likeliest Action=======\n")
print("=======Likeliest Action=======")
for agent_idx, amap in enumerate(likeliest_action):
txt_file.write(f"Likeliest action map of agent {agent_idx} for target pile {pos}:\n")
print(f"Likeliest action map of agent {agent_idx} for target pile {pos}:")
txt_file.write(np.array2string(amap))
print(amap)
txt_file.write("\n")
txt_file.write("=======Action Probabilities=======\n")
print("=======Action Probabilities=======")
for agent_idx, pmap in enumerate(action_probabilities):
self.action_probabilities[agent_idx].append(pmap)
txt_file.write(f"Action probability map of agent {agent_idx} for target pile {pos}:\n")
print(f"Action probability map of agent {agent_idx} for target pile {pos}:")
for d in range(pmap.shape[0]):
row = '['
for r in range(pmap.shape[1]):
row += "[" + ', '.join(f"{x:7.4f}" for x in pmap[d, r]) + "]"
txt_file.write(row + "]")
txt_file.write("\n")
print(row + "]")
txt_file.write(f"Used actions: {used_actions}\n")
print("Used actions:", used_actions)

View File

@@ -2,8 +2,6 @@ import numpy as np; import torch as th; import scipy as sp;
from collections import deque
from torch import nn
# RLLab Magic for calculating the discounted return G(t) = R(t) + gamma * R(t-1)
# cf. https://github.com/rll/rllab/blob/ba78e4c16dc492982e648f117875b22af3965579/rllab/misc/special.py#L107
cumulate_discount = lambda x, gamma: sp.signal.lfilter([1], [1, - gamma], x[::-1], axis=0)[::-1]
class Net(th.nn.Module):
@@ -21,11 +19,11 @@ class Net(th.nn.Module):
if module.bias is not None:
nn.init.uniform_(module.bias, a=-0.1, b=0.1)
def save_model(self, path, agent_name):
th.save(self.net, f"{path}/{agent_name}_{self.__class__.__name__}_model.pth")
def save_model(self, path):
th.save(self.net, f"{path}/{self.__class__.__name__}_model.pth")
def save_model_parameters(self, path, agent_name):
th.save(self.net.state_dict(), f"{path}/{agent_name}_{self.__class__.__name__}_model_parameters.pth")
def save_model_parameters(self, path):
th.save(self.net.state_dict(), f"{path}/{self.__class__.__name__}_model_parameters.pth")
def load_model_parameters(self, path):
self.net.load_state_dict(th.load(path))

View File

@@ -1,3 +1,4 @@
class Names:
ENV = 'env'
ENV_NAME = 'env_name'
@@ -35,3 +36,8 @@ class Names:
SINGLE = 'single'
DISTRIBUTED = 'distributed'
SHARED = 'shared'
EARLY_STOPPING = 'early_stopping'
TRAIN = 'train'
SEED = 'seed'
LAST_N_EPISODES = 'last_n_episodes'
MEAN_TARGET_CHANGE = 'mean_target_change'

View File

@@ -0,0 +1,12 @@
env:
classname: marl_factory_grid.configs.marl.multi_agent_configs
env_name: "marl/multi_agent_configs/coin_quadrant_eval_config"
n_agents: 2 # Number of agents in the environment
eval_render: True # If inference should be graphically visualized
save_and_log: False # If configurations and potential logging files should be saved
algorithm:
seed: 42 # Picks seed to make random parts of algorithm reproducible. -1 for random seed
pile-order: "smart" # Triggers implementation of our emergence prevention mechanism. Agents consider distance to other agent
pile-observability: "single" # Agents can only perceive one coin pile at any given time step
pile_all_done: "shared" # Indicates that agents don't have to collect the same coin piles
auxiliary_piles: False # Coin quadrant does not use this option

View File

@@ -0,0 +1,13 @@
# Configuration that shows emergent behavior in out coin-quadrant environment
env:
classname: marl_factory_grid.configs.marl.multi_agent_configs
env_name: "marl/multi_agent_configs/coin_quadrant_eval_config"
n_agents: 2 # Number of agents in the environment
eval_render: True # If inference should be graphically visualized
save_and_log: False # If configurations and potential logging files should be saved
algorithm:
seed: 42 # Picks seed to make random parts of algorithm reproducible. -1 for random seed
pile-order: "dynamic" # Agents only decide on next target pile based on the distance to the respective piles
pile-observability: "single" # Agents can only perceive one coin pile at any given time step
pile_all_done: "shared" # Indicates that agents don't have to collect the same coin piles
auxiliary_piles: False # Coin quadrant does not use this option

View File

@@ -0,0 +1,16 @@
env:
classname: marl_factory_grid.configs.marl.multi_agent_configs
env_name: "marl/multi_agent_configs/two_rooms_eval_config"
n_agents: 2 # Number of agents in the environment
eval_render: True # If inference should be graphically visualized
save_and_log: False # If configurations and potential logging files should be saved
algorithm:
seed: 42 # Picks seed to make random parts of algorithm reproducible. -1 for random seed
# Piles (=encoded flags) are evenly distributed among the two agents and have to be collected in the order defined
# by the environment config (cf. coords_or_quantity)
pile-order: "agents"
pile-observability: "single" # Agents can only perceive one dirt pile at any given time step
pile_all_done: "distributed" # Indicates that agents must clean their specifically assigned dirt piles
auxiliary_piles: True # Allows agents to go to an auxiliary pile

View File

@@ -0,0 +1,17 @@
# Configuration that shows emergent behavior in our two-rooms environment
env:
classname: marl_factory_grid.configs..marl.multi_agent_configs
env_name: "marl/multi_agent_configs/two_rooms_eval_config_emergent"
n_agents: 2 # Number of agents in the environment
eval_render: True # If inference should be graphically visualized
save_and_log: False # If configurations and potential logging files should be saved
algorithm:
seed: 42 # Picks seed to make random parts of algorithm reproducible. -1 for random seed
# Piles (=encoded flags) are evenly distributed among the two agents and have to be collected in the order defined
# by the environment config (cf. coords_or_quantity)
pile-order: "agents"
pile-observability: "single" # Agents can only perceive one dirt pile at any given time step
pile_all_done: "distributed" # Indicates that agents must clean their specifically assigned dirt piles
auxiliary_piles: False # Shows emergent behavior

View File

@@ -0,0 +1,13 @@
env:
classname: marl_factory_grid.configs.marl.single_agent_configs
env_name: "marl/single_agent_configs/coin_quadrant_agent1_eval_config"
n_agents: 1 # Number of agents in the environment
eval_render: True # If inference should be graphically visualized
save_and_log: False # If configurations and potential logging files should be saved
algorithm:
seed: 42 # Picks seed to make random parts of algorithm reproducible. -1 for random seed
pile-order: "fixed" # Clean coin piles in a fixed order specified by the environment config (cf. coords_or_quantity)
pile-observability: "single" # Agent can only perceive one coin pile at any given time step
pile_all_done: "all" # During inference the episode ends only when all coin piles are cleaned
auxiliary_piles: False # Coin quadrant does not use this option

View File

@@ -0,0 +1,21 @@
env:
classname: marl_factory_grid.configs.marl.single_agent_configs
env_name: "marl/single_agent_configs/coin_quadrant_agent1_train_config"
n_agents: 1 # Number of agents in the environment
train_render: False # If training should be graphically visualized
save_and_log: True # If configurations and potential logging files should be saved
algorithm:
seed: 9 # Picks seed to make random parts of algorithm reproducible. -1 for random seed
gamma: 0.99 # The gamma value that is used as discounting factor
n_steps: 0 # How much experience should be sampled at most until the next value- and policy-net updates are performed. (0 = Monte Carlo)
chunk-episode: 20000 # For update, splits very large episodes in batches of approximately equal size. (0 = update networks with full episode at once)
max_steps: 400000 # Number of training steps used for agent1 (=agent2)
early_stopping: True # If the early stopping functionality should be used
last_n_episodes: 100 # To determine if low change phase has begun, the last n episodes are checked if the mean target change is reached
mean_target_change: 2.0 # What should be the accepted fluctuation for determining if a low change phase has begun
advantage: "Advantage-AC" # Defines the used actor critic model
pile-order: "fixed" # Clean coin piles in a fixed order specified by the environment config (cf. coords_or_quantity)
pile-observability: "single" # Agent can only perceive one coin pile at any given time step
pile_all_done: "single" # Episode ends when the current target pile is cleaned
auxiliary_piles: False # Coin quadrant does not use this option

View File

@@ -0,0 +1,14 @@
env:
classname: marl_factory_grid.configs.marl.single_agent_configs
env_name: "marl/single_agent_configs/two_rooms_agent2_eval_config"
n_agents: 1 # Number of agents in the environment
eval_render: True # If inference should be graphically visualized
save_and_log: False # If configurations and potential logging files should be saved
algorithm:
seed: 42 # Picks seed to make random parts of algorithm reproducible. -1 for random seed
pile-order: "fixed" # Clean coin piles (=encoded flags) in a fixed order specified by the environment config (cf. coords_or_quantity)
pile-observability: "single" # Agent can only perceive one coin pile at any given time step
pile_all_done: "all" # During inference the episode ends only when all coin piles are cleaned
auxiliary_piles: False # Auxiliary piles are only differentiated from regular target piles during marl eval

View File

@@ -0,0 +1,22 @@
env:
classname: marl_factory_grid.configs.marl.single_agent_configs
env_name: "marl/single_agent_configs/two_rooms_agent2_train_config"
n_agents: 1 # Number of agents in the environment
train_render: False # If training should be graphically visualized
save_and_log: True # If configurations and potential logging files should be saved
algorithm:
seed: 9 # Picks seed to make random parts of algorithm reproducible. -1 for random seed
gamma: 0.99 # The gamma value that is used as discounting factor
n_steps: 0 # How much experience should be sampled at most until the next value- and policy-net updates are performed. (0 = Monte Carlo)
chunk-episode: 20000 # For update, splits very large episodes in batches of approximately equal size. (0 = update networks with full episode at once)
max_steps: 300000 # Number of training steps used to train the agent. Here, only a placeholder value
early_stopping: True # If the early stopping functionality should be used
last_n_episodes: 100 # To determine if low change phase has begun, the last n episodes are checked if the mean target change is reached
mean_target_change: 2.0 # What should be the accepted fluctuation for determining if a low change phase has begun
advantage: "Advantage-AC" # Defines the used actor critic model
pile-order: "fixed" # Clean coin piles (=encoded flags) in a fixed order specified by the environment config (cf. coords_or_quantity)
pile-observability: "single" # Agent can only perceive one coin pile at any given time step
pile_all_done: "single" # Episode ends when the current target pile is cleaned
auxiliary_piles: False # Auxiliary piles are only differentiated from regular target piles during marl eval

View File

@@ -1,11 +1,14 @@
import copy
import os
from pathlib import Path
from typing import List
import numpy as np
import pandas as pd
import torch
from marl_factory_grid.algorithms.rl.constants import Names as nms
from marl_factory_grid.algorithms.marl.constants import Names as nms
from marl_factory_grid.algorithms.rl.base_a2c import cumulate_discount
from marl_factory_grid.algorithms.marl.base_a2c import cumulate_discount
def _as_torch(x):
@@ -187,7 +190,7 @@ def distribute_indices(env, cfg, n_agents):
# -> Starting with index 0 even piles are auxiliary piles, odd piles are primary piles
if cfg[nms.ALGORITHM][nms.AUXILIARY_PILES] and nms.DOORS in env.state.entities.keys():
door_positions = [door.pos for door in env.state.entities[nms.DOORS]]
distances = {door_pos: [] for door_pos in door_positions}
distances = {door_pos:[] for door_pos in door_positions}
# Calculate distance of every agent to every door
for door_pos in door_positions:
@@ -198,7 +201,7 @@ def distribute_indices(env, cfg, n_agents):
return [i for i, x in enumerate(lst) if x == item]
# Get agent indices of agents with same distance to door
affected_agents = {door_pos: {} for door_pos in door_positions}
affected_agents = {door_pos:{} for door_pos in door_positions}
for door_pos in distances.keys():
dist = distances[door_pos]
dist_set = set(dist)
@@ -206,22 +209,20 @@ def distribute_indices(env, cfg, n_agents):
affected_agents[door_pos][str(d)] = duplicate_indices(dist, d)
updated_indices = []
for door_pos, agent_distances in affected_agents.items():
if len(agent_distances) == 0:
# Remove auxiliary piles for all agents
# (In config, we defined every pile with an even numbered index to be an auxiliary pile)
updated_indices = [[ele for ele in lst if ele % 2 != 0] for lst in indices]
else:
for distance, agent_indices in agent_distances.items():
# For each distance group, pick one random agent to keep the auxiliary pile
# selected_agent = np.random.choice(agent_indices)
selected_agent = 0
for agent_idx in agent_indices:
if agent_idx == selected_agent:
updated_indices.append(indices[agent_idx])
else:
updated_indices.append([ele for ele in indices[agent_idx] if ele % 2 != 0])
if len(affected_agents[door_positions[0]]) == 0:
# Remove auxiliary piles for all agents
# (In config, we defined every pile with an even numbered index to be an auxiliary pile)
updated_indices = [[ele for ele in lst if ele % 2 != 0] for lst in indices]
else:
for distance, agent_indices in affected_agents[door_positions[0]].items():
# Pick random agent to keep auxiliary pile and remove it for all others
#selected_agent = np.random.choice(agent_indices)
selected_agent = 0
for agent_idx in agent_indices:
if agent_idx == selected_agent:
updated_indices.append(indices[agent_idx])
else:
updated_indices.append([ele for ele in indices[agent_idx] if ele % 2 != 0])
indices = updated_indices
@@ -335,3 +336,42 @@ def save_agent_models(results_path, agents):
for idx, agent in enumerate(agents):
agent.pi.save_model_parameters(results_path)
agent.vf.save_model_parameters(results_path)
def has_low_change_phase_started(return_change_development, last_n_episodes, mean_target_change):
""" Checks if training has reached a phase with only marginal average change """
if np.mean(np.abs(return_change_development[-last_n_episodes:])) < mean_target_change:
print("Low change phase started.")
return True
return False
def significant_deviation(return_change_development, low_change_phase_start_episode):
""" Determines if a significant return deviation has occurred in the last episode """
return_change_development = return_change_development[low_change_phase_start_episode:]
df = pd.DataFrame({'Episode': range(len(return_change_development)), 'DeltaReturn': return_change_development})
df['Difference'] = df['DeltaReturn'].diff().abs()
# Only the most extreme changes (those that are greater than 99.99% of all changes) will be considered significant
threshold = df['Difference'].quantile(0.9999)
# Identify significant changes
significant_changes = df[df['Difference'] > threshold]
print("Threshold: ", threshold, "Significant changes: ", significant_changes)
if len(significant_changes["Episode"]) > 0:
return True
return False
def get_algorithms_marl_path():
return Path(Path(__file__).parent)
def get_configs_marl_path():
return Path(os.path.join(Path(__file__).parent.parent.parent, "configs"))
def get_agent_models_path():
return Path(os.path.join(Path(__file__).parent.parent, "agent_models"))

View File

@@ -1 +0,0 @@
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory

View File

@@ -1,112 +0,0 @@
import numpy as np
import torch as th
import scipy as sp
from collections import deque
from torch import nn
cumulate_discount = lambda x, gamma: sp.signal.lfilter([1], [1, - gamma], x[::-1], axis=0)[::-1]
class Net(th.nn.Module):
def __init__(self, shape, activation, lr):
super().__init__()
self.net = th.nn.Sequential(*[layer
for io, a in zip(zip(shape[:-1], shape[1:]),
[activation] * (len(shape) - 2) + [th.nn.Identity])
for layer in [th.nn.Linear(*io), a()]])
self.optimizer = th.optim.Adam(self.net.parameters(), lr=lr)
# Initialize weights uniformly, so that for the policy net all actions have approximately the same
# probability in the beginning
for module in self.modules():
if isinstance(module, nn.Linear):
nn.init.uniform_(module.weight, a=-0.1, b=0.1)
if module.bias is not None:
nn.init.uniform_(module.bias, a=-0.1, b=0.1)
def save_model(self, path):
th.save(self.net, f"{path}/{self.__class__.__name__}_model.pth")
def save_model_parameters(self, path):
th.save(self.net.state_dict(), f"{path}/{self.__class__.__name__}_model_parameters.pth")
def load_model_parameters(self, path):
self.net.load_state_dict(th.load(path))
self.net.eval()
class ValueNet(Net):
def __init__(self, obs_dim, hidden_sizes=[64, 64], activation=th.nn.ReLU, lr=1e-3):
super().__init__([obs_dim] + hidden_sizes + [1], activation, lr)
def forward(self, obs): return self.net(obs)
def loss(self, states, returns): return ((returns - self(states)) ** 2).mean()
class PolicyNet(Net):
def __init__(self, obs_dim, act_dim, hidden_sizes=[64, 64], activation=th.nn.Tanh, lr=3e-4):
super().__init__([obs_dim] + hidden_sizes + [act_dim], activation, lr)
self.distribution = lambda obs: th.distributions.Categorical(logits=self.net(obs))
def forward(self, obs, act=None, det=False):
"""Given an observation: Returns policy distribution and probablilty for a given action
or Returns a sampled action and its corresponding probablilty"""
pi = self.distribution(obs)
if act is not None: return pi, pi.log_prob(act)
act = self.net(obs).argmax() if det else pi.sample() # sample from the learned distribution
return act, pi.log_prob(act)
def loss(self, states, actions, advantages):
_, logp = self.forward(states, actions)
loss = -(logp * advantages).mean()
return loss
class PolicyGradient:
""" Autonomous agent using vanilla policy gradient. """
def __init__(self, env, seed=42, gamma=0.99, agent_id=0, act_dim=None, obs_dim=None):
self.env = env
self.gamma = gamma # Setup env and discount
th.manual_seed(seed)
np.random.seed(seed) # Seed Torch, numpy and gym
# Keep track of previous rewards and performed steps to calcule the mean Return metric
self._episode, self.ep_returns, self.num_steps = [], deque(maxlen=100), 0
# Get observation and action shapes
if not obs_dim:
obs_size = env.observation_space.shape if len(env.state.entities.by_name("Agents")) == 1 \
else env.observation_space[agent_id].shape # Single agent case vs. multi-agent case
obs_dim = np.prod(obs_size)
if not act_dim:
act_dim = env.action_space[agent_id].n
self.vf = ValueNet(obs_dim) # Setup Value Network (Critic)
self.pi = PolicyNet(obs_dim, act_dim) # Setup Policy Network (Actor)
def step(self, obs):
""" Given an observation, get action and probs from policy and values from critic"""
with th.no_grad():
(a, _), v = self.pi(obs), self.vf(obs)
self._episode.append((None, None, None, v))
return a.numpy()
def policy(self, obs, det=True):
return self.pi(obs, det=det)[0].numpy()
def finish_episode(self):
"""Process self._episode & reset self.env, Returns (s,a,G,V)-Tuple and new inital state"""
s, a, r, v = (np.array(e) for e in zip(*self._episode)) # Get trajectories from rollout
self.ep_returns.append(sum(r))
self._episode = [] # Add episode return to buffer & reset
return s, a, r, v # state, action, Return, Value Tensors
def train(self, states, actions, returns, advantages): # Update policy weights
self.pi.optimizer.zero_grad()
self.vf.optimizer.zero_grad() # Reset optimizer
states = states.flatten(1, -1) # Reduce dimensionality to rollout_dim x input_dim
policy_loss = self.pi.loss(states, actions, advantages) # Calculate Policy loss
policy_loss.backward()
self.pi.optimizer.step() # Apply Policy loss
value_loss = self.vf.loss(states, returns) # Calculate Value loss
value_loss.backward()
self.vf.optimizer.step() # Apply Value loss

View File

@@ -1,242 +0,0 @@
import torch
from typing import Union, List, Dict
import numpy as np
from torch.distributions import Categorical
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.utils import add_env_props, instantiate_class
from pathlib import Path
import pandas as pd
from collections import deque
class Names:
REWARD = 'reward'
DONE = 'done'
ACTION = 'action'
OBSERVATION = 'observation'
LOGITS = 'logits'
HIDDEN_ACTOR = 'hidden_actor'
HIDDEN_CRITIC = 'hidden_critic'
AGENT = 'agent'
ENV = 'env'
ENV_NAME = 'env_name'
N_AGENTS = 'n_agents'
ALGORITHM = 'algorithm'
MAX_STEPS = 'max_steps'
N_STEPS = 'n_steps'
BUFFER_SIZE = 'buffer_size'
CRITIC = 'critic'
BATCH_SIZE = 'bnatch_size'
N_ACTIONS = 'n_actions'
TRAIN_RENDER = 'train_render'
EVAL_RENDER = 'eval_render'
nms = Names
ListOrTensor = Union[List, torch.Tensor]
class BaseActorCritic:
def __init__(self, cfg):
self.factory = add_env_props(cfg)
self.__training = True
self.cfg = cfg
self.n_agents = cfg[nms.AGENT][nms.N_AGENTS]
self.reset_memory_after_epoch = True
self.setup()
def setup(self):
self.net = instantiate_class(self.cfg[nms.AGENT])
self.optimizer = torch.optim.RMSprop(self.net.parameters(), lr=3e-4, eps=1e-5)
@classmethod
def _as_torch(cls, x):
if isinstance(x, np.ndarray):
return torch.from_numpy(x)
elif isinstance(x, List):
return torch.tensor(x)
elif isinstance(x, (int, float)):
return torch.tensor([x])
return x
def train(self):
self.__training = False
networks = [self.net] if not isinstance(self.net, List) else self.net
for net in networks:
net.train()
def eval(self):
self.__training = False
networks = [self.net] if not isinstance(self.net, List) else self.net
for net in networks:
net.eval()
def load_state_dict(self, path: Path):
pass
def get_actions(self, out) -> ListOrTensor:
actions = [Categorical(logits=logits).sample().item() for logits in out[nms.LOGITS]]
return actions
def init_hidden(self) -> Dict[str, ListOrTensor]:
pass
def forward(self,
observations: ListOrTensor,
actions: ListOrTensor,
hidden_actor: ListOrTensor,
hidden_critic: ListOrTensor
) -> Dict[str, ListOrTensor]:
pass
@torch.no_grad()
def train_loop(self, checkpointer=None):
env = self.factory
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
tm = MARLActorCriticMemory(self.n_agents, self.cfg[nms.ALGORITHM].get(nms.BUFFER_SIZE, n_steps))
global_steps, episode, df_results = 0, 0, []
reward_queue = deque(maxlen=2000)
while global_steps < max_steps:
obs = env.reset()
obs = list(obs.values())
last_hiddens = self.init_hidden()
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
done, rew_log = [False] * self.n_agents, 0
if self.reset_memory_after_epoch:
tm.reset()
tm.add(observation=obs, action=last_action,
logits=torch.zeros(self.n_agents, 1, self.cfg[nms.AGENT][nms.N_ACTIONS]),
values=torch.zeros(self.n_agents, 1), reward=reward, done=done, **last_hiddens)
while not all(done):
out = self.forward(obs, last_action, **last_hiddens)
action = self.get_actions(out)
_, next_obs, reward, done, info = env.step(action)
done = [done] * self.n_agents if isinstance(done, bool) else done
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
last_hiddens = dict(hidden_actor=out[nms.HIDDEN_ACTOR],
hidden_critic=out[nms.HIDDEN_CRITIC])
logits = torch.stack([tensor.squeeze(0) for tensor in out.get(nms.LOGITS, None)], dim=0)
values = torch.stack([tensor.squeeze(0) for tensor in out.get(nms.CRITIC, None)], dim=0)
tm.add(observation=obs, action=action, reward=reward, done=done,
logits=logits, values=values,
**last_hiddens)
obs = next_obs
last_action = action
if (global_steps+1) % n_steps == 0 or all(done):
with torch.inference_mode(False):
self.learn(tm)
global_steps += 1
rew_log += sum(reward)
reward_queue.extend(reward)
if checkpointer is not None:
checkpointer.step([
(f'agent#{i}', agent)
for i, agent in enumerate([self.net] if not isinstance(self.net, List) else self.net)
])
if global_steps >= max_steps:
break
if global_steps%100 == 0:
print(f'reward at episode: {episode} = {rew_log}')
episode += 1
df_results.append([episode, rew_log, *reward])
df_results = pd.DataFrame(df_results,
columns=['steps', 'reward', *[f'agent#{i}' for i in range(self.n_agents)]]
)
if checkpointer is not None:
df_results.to_csv(checkpointer.path / 'results.csv', index=False)
return df_results
@torch.inference_mode(True)
def eval_loop(self, n_episodes, render=False):
env = self.factory
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
env.render()
episode, results = 0, []
while episode < n_episodes:
obs = env.reset()
obs = list(obs.values())
last_hiddens = self.init_hidden()
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
while not all(done):
out = self.forward(obs, last_action, **last_hiddens)
action = self.get_actions(out)
_, next_obs, reward, done, info = env.step(action)
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
env.render()
if isinstance(done, bool):
done = [done] * obs[0].shape[0]
obs = next_obs
last_action = action
last_hiddens = dict(hidden_actor=out.get(nms.HIDDEN_ACTOR, None),
hidden_critic=out.get(nms.HIDDEN_CRITIC, None)
)
eps_rew += torch.tensor(reward)
results.append(eps_rew.tolist() + [sum(eps_rew).item()] + [episode])
episode += 1
agent_columns = [f'agent#{i}' for i in range(self.cfg[nms.ENV][nms.N_AGENTS])]
results = pd.DataFrame(results, columns=agent_columns + ['sum', 'episode'])
results = pd.melt(results, id_vars=['episode'], value_vars=agent_columns + ['sum'],
value_name='reward', var_name='agent')
return results
@staticmethod
def compute_advantages(critic, reward, done, gamma, gae_coef=0.0):
tds = (reward + gamma * (1.0 - done) * critic[:, 1:].detach()) - critic[:, :-1]
if gae_coef <= 0:
return tds
gae = torch.zeros_like(tds[:, -1])
gaes = []
for t in range(tds.shape[1]-1, -1, -1):
gae = tds[:, t] + gamma * gae_coef * (1.0 - done[:, t]) * gae
gaes.insert(0, gae)
gaes = torch.stack(gaes, dim=1)
return gaes
def actor_critic(self, tm, network, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
obs, actions, done, reward = tm.observation, tm.action, tm.done[:, 1:], tm.reward[:, 1:]
out = network(obs, actions, tm.hidden_actor[:, 0].squeeze(0), tm.hidden_critic[:, 0].squeeze(0))
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
critic = out[nms.CRITIC]
entropy_loss = Categorical(logits=logits).entropy().mean(-1)
advantages = self.compute_advantages(critic, reward, done, gamma, gae_coef)
value_loss = advantages.pow(2).mean(-1) # n_agent
# policy loss
log_ap = torch.log_softmax(logits, -1)
log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze()
a2c_loss = -(advantages.detach() * log_ap).mean(-1)
# weighted loss
loss = a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss
return loss.mean()
def learn(self, tm: MARLActorCriticMemory, **kwargs):
loss = self.actor_critic(tm, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
# remove next_obs, will be added in next iter
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5)
self.optimizer.step()

View File

@@ -1,34 +0,0 @@
agent:
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/MultiAgentConfigs/dirt_quadrant_train_config"
n_agents: 2
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 200000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "dynamic" # Use "dynamic" to see emergent phenomenon and "smart" to prevent it
pile-observability: "single" # Options: "single", "all"
pile_all_done: "shared" # Options: "single", "all" ("single" for training, "all" for eval), "shared"
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@@ -1,35 +0,0 @@
agent:
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/two_rooms_one_door_modified_train_config"
n_agents: 2
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 260000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "agents" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "distributed" # Options: "single", "all" ("single" for training, "all" and "distributed" for eval)
auxiliary_piles: True # Use True to see emergent phenomenon and False to prevent it
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@@ -1,34 +0,0 @@
agent:
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 1
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/dirt_quadrant_train_config"
n_agents: 1
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: True
record: False
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 240000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "fixed" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "single" # Options: "single", "all" ("single" for training, "all" for eval)
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@@ -1,8 +0,0 @@
marl_factory_grid>environment>rules.py#SpawnEntity.on_reset()
marl_factory_grid>environment>rewards.py
marl_factory_grid>modules>clean_up>groups.py#DirtPiles.trigger_spawn()
marl_factory_grid>environment>rules.py#AgentSpawnRule
marl_factory_grid>utils>states.py#GameState.__init__()
marl_factory_grid>environment>factory.py>Factory#render
marl_factory_grid>environment>factory.py>Factory#set_recorder
marl_factory_grid>utils>renderer.py>Renderer#render

View File

@@ -1,35 +0,0 @@
agent:
classname: marl_factory_grid.algorithms.rl.networks.RecurrentAC
n_agents: 1
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/two_rooms_one_door_modified_train_config"
n_agents: 1
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: False
record: False
method: marl_factory_grid.algorithms.rl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 260000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "fixed" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "single" # Options: "single", "all" ("single" for training, "all" for eval)
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@@ -1,57 +0,0 @@
import torch
from marl_factory_grid.algorithms.rl.base_ac import BaseActorCritic, nms
from marl_factory_grid.algorithms.utils import instantiate_class
from pathlib import Path
from natsort import natsorted
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory
class LoopIAC(BaseActorCritic):
def __init__(self, cfg):
super(LoopIAC, self).__init__(cfg)
def setup(self):
self.net = [
instantiate_class(self.cfg[nms.AGENT]) for _ in range(self.n_agents)
]
self.optimizer = [
torch.optim.RMSprop(self.net[ag_i].parameters(), lr=3e-4, eps=1e-5) for ag_i in range(self.n_agents)
]
def load_state_dict(self, path: Path):
paths = natsorted(list(path.glob('*.pt')))
for path, net in zip(paths, self.net):
net.load_state_dict(torch.load(path))
@staticmethod
def merge_dicts(ds): # todo could be recursive for more than 1 hierarchy
d = {}
for k in ds[0].keys():
d[k] = [d[k] for d in ds]
return d
def init_hidden(self):
ha = [net.init_hidden_actor() for net in self.net]
hc = [net.init_hidden_critic() for net in self.net]
return dict(hidden_actor=ha, hidden_critic=hc)
def forward(self, observations, actions, hidden_actor, hidden_critic):
outputs = [
net(
self._as_torch(observations[ag_i]).unsqueeze(0).unsqueeze(0), # agent x time
self._as_torch(actions[ag_i]).unsqueeze(0),
hidden_actor[ag_i],
hidden_critic[ag_i]
) for ag_i, net in enumerate(self.net)
]
return self.merge_dicts(outputs)
def learn(self, tms: MARLActorCriticMemory, **kwargs):
for ag_i in range(self.n_agents):
tm, net = tms(ag_i), self.net[ag_i]
loss = self.actor_critic(tm, net, **self.cfg[nms.ALGORITHM], **kwargs)
self.optimizer[ag_i].zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), 0.5)
self.optimizer[ag_i].step()

View File

@@ -1,66 +0,0 @@
from marl_factory_grid.algorithms.rl.base_ac import Names as nms
from marl_factory_grid.algorithms.rl.snac import LoopSNAC
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory
import torch
from torch.distributions import Categorical
from marl_factory_grid.algorithms.utils import instantiate_class
class LoopMAPPO(LoopSNAC):
def __init__(self, *args, **kwargs):
super(LoopMAPPO, self).__init__(*args, **kwargs)
self.reset_memory_after_epoch = False
def setup(self):
self.net = instantiate_class(self.cfg[nms.AGENT])
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=3e-4, eps=1e-5)
def learn(self, tm: MARLActorCriticMemory, **kwargs):
if len(tm) >= self.cfg['algorithm']['buffer_size']:
# only learn when buffer is full
for batch_i in range(self.cfg['algorithm']['n_updates']):
batch = tm.chunk_dataloader(chunk_len=self.cfg['algorithm']['n_steps'],
k=self.cfg['algorithm']['batch_size'])
loss = self.mappo(batch, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5)
self.optimizer.step()
def monte_carlo_returns(self, rewards, done, gamma):
rewards_ = []
discounted_reward = torch.zeros_like(rewards[:, -1])
for t in range(rewards.shape[1]-1, -1, -1):
discounted_reward = rewards[:, t] + (gamma * (1.0 - done[:, t]) * discounted_reward)
rewards_.insert(0, discounted_reward)
rewards_ = torch.stack(rewards_, dim=1)
return rewards_
def mappo(self, batch, network, gamma, entropy_coef, vf_coef, clip_range, **__):
out = network(batch[nms.OBSERVATION], batch[nms.ACTION], batch[nms.HIDDEN_ACTOR], batch[nms.HIDDEN_CRITIC])
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
old_log_probs = torch.log_softmax(batch[nms.LOGITS], -1)
old_log_probs = torch.gather(old_log_probs, index=batch[nms.ACTION][:, 1:].unsqueeze(-1), dim=-1).squeeze()
# monte carlo returns
mc_returns = self.monte_carlo_returns(batch[nms.REWARD], batch[nms.DONE], gamma)
mc_returns = (mc_returns - mc_returns.mean()) / (mc_returns.std() + 1e-8) # todo: norm across agent ok?
advantages = mc_returns - out[nms.CRITIC][:, :-1]
# policy loss
log_ap = torch.log_softmax(logits, -1)
log_ap = torch.gather(log_ap, dim=-1, index=batch[nms.ACTION][:, 1:].unsqueeze(-1)).squeeze()
ratio = (log_ap - old_log_probs).exp()
surr1 = ratio * advantages.detach()
surr2 = torch.clamp(ratio, 1 - clip_range, 1 + clip_range) * advantages.detach()
policy_loss = -torch.min(surr1, surr2).mean(-1)
# entropy & value loss
entropy_loss = Categorical(logits=logits).entropy().mean(-1)
value_loss = advantages.pow(2).mean(-1) # n_agent
# weighted loss
loss = policy_loss + vf_coef*value_loss - entropy_coef * entropy_loss
return loss.mean()

View File

@@ -1,221 +0,0 @@
import numpy as np
from collections import deque
import torch
from typing import Union
from torch import Tensor
from torch.utils.data import Dataset, ConcatDataset
import random
class ActorCriticMemory(object):
def __init__(self, capacity=10):
self.capacity = capacity
self.reset()
def reset(self):
self.__actions = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__hidden_actor = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__hidden_critic = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__states = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__rewards = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__dones = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__logits = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__values = LazyTensorFiFoQueue(maxlen=self.capacity+1)
def __len__(self):
return len(self.__rewards) - 1
@property
def observation(self, sls=slice(0, None)): # add time dimension through stacking
return self.__states[sls].unsqueeze(0) # 1 x time x hidden dim
@property
def hidden_actor(self, sls=slice(0, None)): # 1 x n_layers x dim
return self.__hidden_actor[sls].unsqueeze(0) # 1 x time x n_layers x dim
@property
def hidden_critic(self, sls=slice(0, None)): # 1 x n_layers x dim
return self.__hidden_critic[sls].unsqueeze(0) # 1 x time x n_layers x dim
@property
def reward(self, sls=slice(0, None)):
return self.__rewards[sls].squeeze().unsqueeze(0) # 1 x time
@property
def action(self, sls=slice(0, None)):
return self.__actions[sls].long().squeeze().unsqueeze(0) # 1 x time
@property
def done(self, sls=slice(0, None)):
return self.__dones[sls].float().squeeze().unsqueeze(0) # 1 x time
@property
def logits(self, sls=slice(0, None)): # assumes a trailing 1 for time dimension - common when using output from NN
return self.__logits[sls].squeeze().unsqueeze(0) # 1 x time x actions
@property
def values(self, sls=slice(0, None)):
return self.__values[sls].squeeze().unsqueeze(0) # 1 x time x actions
def add_observation(self, state: Union[Tensor, np.ndarray]):
self.__states.append(state if isinstance(state, Tensor) else torch.from_numpy(state))
def add_hidden_actor(self, hidden: Tensor):
# layers x hidden dim
self.__hidden_actor.append(hidden)
def add_hidden_critic(self, hidden: Tensor):
# layers x hidden dim
self.__hidden_critic.append(hidden)
def add_action(self, action: Union[int, Tensor]):
if not isinstance(action, Tensor):
action = torch.tensor(action)
self.__actions.append(action)
def add_reward(self, reward: Union[float, Tensor]):
if not isinstance(reward, Tensor):
reward = torch.tensor(reward)
self.__rewards.append(reward)
def add_done(self, done: bool):
if not isinstance(done, Tensor):
done = torch.tensor(done)
self.__dones.append(done)
def add_logits(self, logits: Tensor):
self.__logits.append(logits)
def add_values(self, values: Tensor):
self.__values.append(values)
def add(self, **kwargs):
for k, v in kwargs.items():
func = getattr(ActorCriticMemory, f'add_{k}')
func(self, v)
class MARLActorCriticMemory(object):
def __init__(self, n_agents, capacity):
self.n_agents = n_agents
self.memories = [
ActorCriticMemory(capacity) for _ in range(n_agents)
]
def __call__(self, agent_i):
return self.memories[agent_i]
def __len__(self):
return len(self.memories[0]) # todo add assertion check!
def reset(self):
for mem in self.memories:
mem.reset()
def add(self, **kwargs):
for agent_i in range(self.n_agents):
for k, v in kwargs.items():
func = getattr(ActorCriticMemory, f'add_{k}')
func(self.memories[agent_i], v[agent_i])
def __getattr__(self, attr):
all_attrs = [getattr(mem, attr) for mem in self.memories]
return torch.cat(all_attrs, 0) # agent x time ...
def chunk_dataloader(self, chunk_len, k):
datasets = [ExperienceChunks(mem, chunk_len, k) for mem in self.memories]
dataset = ConcatDataset(datasets)
data = [dataset[i] for i in range(len(dataset))]
data = custom_collate_fn(data)
return data
def custom_collate_fn(batch):
elem = batch[0]
return {key: torch.cat([d[key] for d in batch], dim=0) for key in elem}
class ExperienceChunks(Dataset):
def __init__(self, memory, chunk_len, k):
assert chunk_len <= len(memory), 'chunk_len cannot be longer than the size of the memory'
self.memory = memory
self.chunk_len = chunk_len
self.k = k
@property
def whitelist(self):
whitelist = torch.ones(len(self.memory) - self.chunk_len)
for d in self.memory.done.squeeze().nonzero().flatten():
whitelist[max((0, d-self.chunk_len-1)):d+2] = 0
whitelist[0] = 0
return whitelist.tolist()
def sample(self, start=1):
cl = self.chunk_len
sample = dict(observation=self.memory.observation[:, start:start+cl+1],
action=self.memory.action[:, start-1:start+cl],
hidden_actor=self.memory.hidden_actor[:, start-1],
hidden_critic=self.memory.hidden_critic[:, start-1],
reward=self.memory.reward[:, start:start + cl],
done=self.memory.done[:, start:start + cl],
logits=self.memory.logits[:, start:start + cl],
values=self.memory.values[:, start:start + cl])
return sample
def __len__(self):
return self.k
def __getitem__(self, i):
idx = random.choices(range(0, len(self.memory) - self.chunk_len), weights=self.whitelist, k=1)
return self.sample(idx[0])
class LazyTensorFiFoQueue:
def __init__(self, maxlen):
self.maxlen = maxlen
self.reset()
def reset(self):
self.__lazy_queue = deque(maxlen=self.maxlen)
self.shape = None
self.queue = None
def shape_init(self, tensor: Tensor):
self.shape = torch.Size([self.maxlen, *tensor.shape])
def build_tensor_queue(self):
if len(self.__lazy_queue) > 0:
block = torch.stack(list(self.__lazy_queue), dim=0)
l = block.shape[0]
if self.queue is None:
self.queue = block
elif self.true_len() <= self.maxlen:
self.queue = torch.cat((self.queue, block), dim=0)
else:
self.queue = torch.cat((self.queue[l:], block), dim=0)
self.__lazy_queue.clear()
def append(self, data):
if self.shape is None:
self.shape_init(data)
self.__lazy_queue.append(data)
if len(self.__lazy_queue) >= self.maxlen:
self.build_tensor_queue()
def true_len(self):
return len(self.__lazy_queue) + (0 if self.queue is None else self.queue.shape[0])
def __len__(self):
return min((self.true_len(), self.maxlen))
def __str__(self):
return f'LazyTensorFiFoQueue\tmaxlen: {self.maxlen}, shape: {self.shape}, ' \
f'len: {len(self)}, true_len: {self.true_len()}, elements in lazy queue: {len(self.__lazy_queue)}'
def __getitem__(self, item_or_slice):
self.build_tensor_queue()
return self.queue[item_or_slice]

View File

@@ -1,103 +0,0 @@
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class RecurrentAC(nn.Module):
def __init__(self, observation_size, n_actions, obs_emb_size,
action_emb_size, hidden_size_actor, hidden_size_critic,
n_agents, use_agent_embedding=True):
super(RecurrentAC, self).__init__()
observation_size = np.prod(observation_size)
self.n_layers = 1
self.n_actions = n_actions
self.use_agent_embedding = use_agent_embedding
self.hidden_size_actor = hidden_size_actor
self.hidden_size_critic = hidden_size_critic
self.action_emb_size = action_emb_size
self.obs_proj = nn.Linear(observation_size, obs_emb_size)
self.action_emb = nn.Embedding(n_actions+1, action_emb_size, padding_idx=0)
self.agent_emb = nn.Embedding(n_agents, action_emb_size)
mix_in_size = obs_emb_size+action_emb_size if not use_agent_embedding else obs_emb_size+n_agents*action_emb_size
self.mix = nn.Sequential(nn.Tanh(),
nn.Linear(mix_in_size, obs_emb_size),
nn.Tanh(),
nn.Linear(obs_emb_size, obs_emb_size)
)
self.gru_actor = nn.GRU(obs_emb_size, hidden_size_actor, batch_first=True, num_layers=self.n_layers)
self.gru_critic = nn.GRU(obs_emb_size, hidden_size_critic, batch_first=True, num_layers=self.n_layers)
self.action_head = nn.Sequential(
nn.Linear(hidden_size_actor, hidden_size_actor),
nn.Tanh(),
nn.Linear(hidden_size_actor, n_actions)
)
# spectral_norm(nn.Linear(hidden_size_actor, hidden_size_actor)),
self.critic_head = nn.Sequential(
nn.Linear(hidden_size_critic, hidden_size_critic),
nn.Tanh(),
nn.Linear(hidden_size_critic, 1)
)
#self.action_head[-1].weight.data.uniform_(-3e-3, 3e-3)
#self.action_head[-1].bias.data.uniform_(-3e-3, 3e-3)
def init_hidden_actor(self):
return torch.zeros(1, self.n_layers, self.hidden_size_actor)
def init_hidden_critic(self):
return torch.zeros(1, self.n_layers, self.hidden_size_critic)
def forward(self, observations, actions, hidden_actor=None, hidden_critic=None):
n_agents, t, *_ = observations.shape
obs_emb = self.obs_proj(observations.view(n_agents, t, -1).float())
action_emb = self.action_emb(actions+1) # shift by one due to padding idx
if not self.use_agent_embedding:
x_t = torch.cat((obs_emb, action_emb), -1)
else:
agent_emb = self.agent_emb(
torch.cat([torch.arange(0, n_agents, 1).view(-1, 1)] * t, 1)
)
x_t = torch.cat((obs_emb, agent_emb, action_emb), -1)
mixed_x_t = self.mix(x_t)
output_p, _ = self.gru_actor(input=mixed_x_t, hx=hidden_actor.swapaxes(1, 0))
output_c, _ = self.gru_critic(input=mixed_x_t, hx=hidden_critic.swapaxes(1, 0))
logits = self.action_head(output_p)
critic = self.critic_head(output_c).squeeze(-1)
return dict(logits=logits, critic=critic, hidden_actor=output_p, hidden_critic=output_c)
class RecurrentACL2(RecurrentAC):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.action_head = nn.Sequential(
nn.Linear(self.hidden_size_actor, self.hidden_size_actor),
nn.Tanh(),
NormalizedLinear(self.hidden_size_actor, self.n_actions, trainable_magnitude=True)
)
class NormalizedLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int,
device=None, dtype=None, trainable_magnitude=False):
super(NormalizedLinear, self).__init__(in_features, out_features, False, device, dtype)
self.d_sqrt = in_features**0.5
self.trainable_magnitude = trainable_magnitude
self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude)
def forward(self, in_array):
normalized_input = F.normalize(in_array, dim=-1, p=2, eps=1e-5)
normalized_weight = F.normalize(self.weight, dim=-1, p=2, eps=1e-5)
return F.linear(normalized_input, normalized_weight) * self.d_sqrt * self.scale
class L2Norm(nn.Module):
def __init__(self, in_features, trainable_magnitude=False):
super(L2Norm, self).__init__()
self.d_sqrt = in_features**0.5
self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude)
def forward(self, x):
return F.normalize(x, dim=-1, p=2, eps=1e-5) * self.d_sqrt * self.scale

View File

@@ -1,55 +0,0 @@
import torch
from torch.distributions import Categorical
from marl_factory_grid.algorithms.rl.iac import LoopIAC
from marl_factory_grid.algorithms.rl.base_ac import nms
from marl_factory_grid.algorithms.rl.memory import MARLActorCriticMemory
class LoopSEAC(LoopIAC):
def __init__(self, cfg):
super(LoopSEAC, self).__init__(cfg)
def actor_critic(self, tm, networks, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
obs, actions, done, reward = tm.observation, tm.action, tm.done[:, 1:], tm.reward[:, 1:]
outputs = [net(obs, actions, tm.hidden_actor[:, 0], tm.hidden_critic[:, 0]) for net in networks]
with torch.inference_mode(True):
true_action_logp = torch.stack([
torch.log_softmax(out[nms.LOGITS][ag_i, :-1], -1)
.gather(index=actions[ag_i, 1:, None], dim=-1)
for ag_i, out in enumerate(outputs)
], 0).squeeze()
losses = []
for ag_i, out in enumerate(outputs):
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
critic = out[nms.CRITIC]
entropy_loss = Categorical(logits=logits[ag_i]).entropy().mean()
advantages = self.compute_advantages(critic, reward, done, gamma, gae_coef)
# policy loss
log_ap = torch.log_softmax(logits, -1)
log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze()
# importance weights
iw = (log_ap - true_action_logp).exp().detach() # importance_weights
a2c_loss = (-iw*log_ap * advantages.detach()).mean(-1)
value_loss = (iw*advantages.pow(2)).mean(-1) # n_agent
# weighted loss
loss = (a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss).mean()
losses.append(loss)
return losses
def learn(self, tms: MARLActorCriticMemory, **kwargs):
losses = self.actor_critic(tms, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
for ag_i, loss in enumerate(losses):
self.optimizer[ag_i].zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net[ag_i].parameters(), 0.5)
self.optimizer[ag_i].step()

View File

@@ -1,33 +0,0 @@
from marl_factory_grid.algorithms.rl.base_ac import BaseActorCritic
from marl_factory_grid.algorithms.rl.base_ac import nms
import torch
from torch.distributions import Categorical
from pathlib import Path
class LoopSNAC(BaseActorCritic):
def __init__(self, cfg):
super().__init__(cfg)
def load_state_dict(self, path: Path):
path2weights = list(path.glob('*.pt'))
assert len(path2weights) == 1, f'Expected a single set of weights but got {len(path2weights)}'
self.net.load_state_dict(torch.load(path2weights[0]))
def init_hidden(self):
hidden_actor = self.net.init_hidden_actor()
hidden_critic = self.net.init_hidden_critic()
return dict(hidden_actor=torch.cat([hidden_actor] * self.n_agents, 0),
hidden_critic=torch.cat([hidden_critic] * self.n_agents, 0)
)
def get_actions(self, out):
actions = Categorical(logits=out[nms.LOGITS]).sample().squeeze()
return actions
def forward(self, observations, actions, hidden_actor, hidden_critic):
out = self.net(self._as_torch(observations).unsqueeze(1),
self._as_torch(actions).unsqueeze(1),
hidden_actor, hidden_critic
)
return out

View File

@@ -33,6 +33,7 @@ class TSPBaseAgent(ABC):
self.local_optimization = True
self._env = state
self.state = self._env.state[c.AGENT][agent_i]
self.spawn_position = np.array(self.state.pos)
self._position_graph = self.generate_pos_graph()
self._static_route = None
self.cached_route = None
@@ -79,7 +80,7 @@ class TSPBaseAgent(ABC):
start_time = time.time()
if self.cached_route is not None:
print(f" Used cached route: {self.cached_route}")
#print(f" Used cached route: {self.cached_route}")
return copy.deepcopy(self.cached_route)
else:
@@ -89,7 +90,7 @@ class TSPBaseAgent(ABC):
[self.state.pos] + \
[x for x in positions if max(abs(np.subtract(x, self.state.pos))) < 3]
try:
while len(nodes) < 7:
while len(nodes) < 13:
nodes += [next(x for x in positions if x not in nodes)]
except StopIteration:
nodes = [self.state.pos] + positions
@@ -100,11 +101,11 @@ class TSPBaseAgent(ABC):
route = tsp.traveling_salesman_problem(self._position_graph,
nodes=nodes, cycle=True, method=tsp.greedy_tsp)
self.cached_route = copy.deepcopy(route)
print(f"Cached route: {self.cached_route}")
#print(f"Cached route: {self.cached_route}")
end_time = time.time()
duration = end_time - start_time
print("TSP calculation took {:.2f} seconds to execute".format(duration))
#print("TSP calculation took {:.2f} seconds to execute".format(duration))
return route
def _door_is_close(self, state):

View File

@@ -0,0 +1,96 @@
import os
import pickle
from pathlib import Path
from tqdm import trange
from marl_factory_grid import Factory
from marl_factory_grid.algorithms.static.contortions import get_coin_quadrant_tsp_agents, get_two_rooms_tsp_agents
def coin_quadrant_multi_agent_tsp_eval(emergent_phenomenon):
run_tsp_setting("coin_quadrant", emergent_phenomenon, log=False)
def two_rooms_multi_agent_tsp_eval(emergent_phenomenon):
run_tsp_setting("two_rooms", emergent_phenomenon, log=False)
def run_tsp_setting(config_name, emergent_phenomenon, n_episodes=1, log=False):
# Render at each step?
render = True
# Path to config File
path = Path(f'./marl_factory_grid/configs/tsp/{config_name}.yaml')
# Create results folder
runs = os.listdir("./study_out/")
run_numbers = [int(run[7:]) for run in runs if run[:7] == "tsp_run"]
next_run_number = max(run_numbers) + 1 if run_numbers else 0
results_path = f"./study_out/tsp_run{next_run_number}"
os.mkdir(results_path)
# Env Init
factory = Factory(path)
with open(f"{results_path}/env_config.txt", "w") as txt_file:
txt_file.write(str(factory.conf))
still_existing_coin_piles = []
reached_flags = []
for episode in trange(n_episodes):
_ = factory.reset()
still_existing_coin_piles.append([])
reached_flags.append([])
done = False
if render:
factory.render()
factory._renderer.fps = 5
if config_name == "coin_quadrant":
agents = get_coin_quadrant_tsp_agents(emergent_phenomenon, factory)
elif config_name == "two_rooms":
agents = get_two_rooms_tsp_agents(emergent_phenomenon, factory)
else:
print("Config name does not exist. Abort...")
break
ep_steps = 0
while not done:
a = [x.predict() for x in agents]
# Have this condition, to terminate as soon as all coin piles are collected. This ensures that the implementation
# of the TSP agent is equivalent to that of the RL agent
if 'CoinPiles' in list(factory.state.entities.keys()) and factory.state.entities['CoinPiles'].global_amount == 0.0:
break
obs_type, _, _, done, info = factory.step(a)
if 'CoinPiles' in list(factory.state.entities.keys()):
still_existing_coin_piles[-1].append(len(factory.state.entities['CoinPiles']))
if 'Destinations' in list(factory.state.entities.keys()):
reached_flags[-1].append(sum([1 for ele in [x.was_reached() for x in factory.state['Destinations']] if ele]))
ep_steps += 1
if render:
factory.render()
if done:
break
collected_coin_piles_per_step = []
if 'CoinPiles' in list(factory.state.entities.keys()):
for ep in still_existing_coin_piles:
collected_coin_piles_per_step.append([max(ep)-ep[idx] for idx, value in enumerate(ep)])
# Remove first element and add last element where all coin piles have been collected
del collected_coin_piles_per_step[-1][0]
collected_coin_piles_per_step[-1].append(max(still_existing_coin_piles[-1]))
# Add last entry to reached_flags
print("Number of environment steps:", ep_steps)
if 'CoinPiles' in list(factory.state.entities.keys()):
print("Collected coins per step:", collected_coin_piles_per_step)
if 'Destinations' in list(factory.state.entities.keys()):
print("Reached flags per step:", reached_flags)
if log:
if 'CoinPiles' in list(factory.state.entities.keys()):
metrics_data = {"collected_coin_piles_per_step": collected_coin_piles_per_step}
if 'Destinations' in list(factory.state.entities.keys()):
metrics_data = {"reached_flags": reached_flags}
with open(f"{results_path}/metrics", "wb") as pickle_file:
pickle.dump(metrics_data, pickle_file)

View File

@@ -0,0 +1,55 @@
import numpy as np
from marl_factory_grid.algorithms.static.TSP_coin_agent import TSPCoinAgent
from marl_factory_grid.algorithms.static.TSP_target_agent import TSPTargetAgent
def get_coin_quadrant_tsp_agents(emergent_phenomenon, factory):
agents = [TSPCoinAgent(factory, 0), TSPCoinAgent(factory, 1)]
if not emergent_phenomenon:
edge_costs = {}
# Add costs for horizontal edges
for i in range(1, 10):
for j in range(1, 9):
# Add costs for both traversal directions
edge_costs[f"{(i, j)}-{i, j + 1}"] = 0.55 + (i - 1) * 0.05
edge_costs[f"{i, j + 1}-{(i, j)}"] = 0.55 + (i - 1) * 0.05
# Add costs for vertical edges
for i in range(1, 9):
for j in range(1, 10):
# Add costs for both traversal directions
edge_costs[f"{(i, j)}-{i + 1, j}"] = 0.55 + (i) * 0.05
edge_costs[f"{i + 1, j}-{(i, j)}"] = 0.55 + (i - 1) * 0.05
for agent in agents:
for u, v, weight in agent._position_graph.edges(data='weight'):
agent._position_graph[u][v]['weight'] = edge_costs[f"{u}-{v}"]
return agents
def get_two_rooms_tsp_agents(emergent_phenomenon, factory):
agents = [TSPTargetAgent(factory, 0), TSPTargetAgent(factory, 1)]
if not emergent_phenomenon:
edge_costs = {}
# Add costs for horizontal edges
for i in range(1, 6):
for j in range(1, 13):
# Add costs for both traversal directions
edge_costs[f"{(i, j)}-{i, j + 1}"] = np.abs(5/i*np.cbrt(((j+1)/4 - 1)) - 1)
edge_costs[f"{i, j + 1}-{(i, j)}"] = np.abs(5/i*np.cbrt((j/4 - 1)) - 1)
# Add costs for vertical edges
for i in range(1, 5):
for j in range(1, 14):
# Add costs for both traversal directions
edge_costs[f"{(i, j)}-{i + 1, j}"] = np.abs(5/(i+1)*np.cbrt((j/4 - 1)) - 1)
edge_costs[f"{i + 1, j}-{(i, j)}"] = np.abs(5/i*np.cbrt((j/4 - 1)) - 1)
for agent in agents:
for u, v, weight in agent._position_graph.edges(data='weight'):
agent._position_graph[u][v]['weight'] = edge_costs[f"{u}-{v}"]
return agents

View File

@@ -1,9 +1,11 @@
import os
from pathlib import Path
import numpy as np
import yaml
from marl_factory_grid import Factory
from marl_factory_grid.algorithms.marl.utils import get_configs_marl_path
def load_class(classname):
@@ -43,6 +45,10 @@ def get_class(arguments):
return c
def get_study_out_path():
return Path(os.path.join(Path(__file__).parent.parent.parent, "study_out"))
def get_arguments(arguments):
d = dict(arguments)
if "classname" in d:
@@ -58,19 +64,13 @@ def load_yaml_file(path: Path):
def add_env_props(cfg):
# Path to config File
env_path = Path(f'../marl_factory_grid/configs/{cfg["env"]["env_name"]}.yaml')
env_path = Path(f'{get_configs_marl_path()}/{cfg["env"]["env_name"]}.yaml')
print(cfg)
# Env Init
factory = Factory(env_path)
_ = factory.reset()
# Agent Init
if len(factory.state.moving_entites) == 1: # Single agent setting
observation_size = list(factory.observation_space.shape)
else: # Multi-agent setting
observation_size = list(factory.observation_space[0].shape)
cfg['agent'].update(dict(observation_size=observation_size, n_actions=factory.action_space[0].n))
return factory

View File

@@ -1,78 +0,0 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: quadrant
# Radius of Partially observable Markov decision process
pomdp_r: 0 # default 3
# Print all messages and events
verbose: false
# Run tests
tests: false
# In the "clean and bring" Scenario one agent aims to pick up all items and drop them at drop-off locations while all
# other agents aim to collect coin piles.
Agents:
# The collect coin agents
#Sigmund:
#Actions:
#- Move4
#- Noop
#Observations:
#- CoinPiles
#- Self
#Positions:
#- (9,1)
#- (1,1)
#- (2,4)
#- (4,7)
#- (7,9)
#- (2,4)
#- (4,7)
#- (7,9)
#- (9,9)
#- (9,1)
Wolfgang:
Actions:
- Move4
Observations:
- CoinPiles
- Self
Positions:
- (9,5)
#- (1,1)
#- (2,4)
#- (4,7)
#- (7,9)
#- (2,4)
#- (4,7)
#- (7,9)
#- (9,9)
#- (9,5)
Entities:
CoinPiles:
coords_or_quantity: (1, 1), (2,4), (4,7), (7,9), (9,9) #(9,9), (7,9), (4,7), (2,4), (1, 1) #(1, 1), (2,4), (4,7), (7,9), (9,9) # (4,7), (2,4), (1, 1) # (1, 1), (2,4), (4,7), (7,9), (9,9) # (1, 1), (1,2), (1,3), (2,4), (2,5), (3,6), (4,7), (5,8), (6,8), (7,9), (8,9), (9,9)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to collect this field, can collect the coin in one action
collect_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
# Rules section specifies the rules governing the dynamics of the environment.
Rules:
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
# Can be omitted/ignored if you do not want to take care of collisions at all.
WatchCollisions:
done_at_collisions: false
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions.
# The environment stops when all coins are collected
DoneOnAllCoinsCollected:
#DoneAtMaxStepsReached:
#max_steps: 200

View File

@@ -1,62 +0,0 @@
General:
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_modified
# View Radius; 0 = full observatbility
pomdp_r: 0
# Print all messages and events
verbose: false
# Run tests
tests: false
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
Agents:
#Sigmund:
#Actions:
#- Move4
#- DoorUse
#Observations:
#- CoinPiles
#- Self
#Positions:
#- (3,1)
#- (2,1)
Wolfgang:
Actions:
- Move4
- DoorUse
Observations:
- CoinPiles
- Self
Positions:
- (3,13)
- (2,13)
Entities:
CoinPiles:
coords_or_quantity: (2,13), (3,2) # (2,1), (3,12)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to collect this field, can collect the coin in one action
collect_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
Doors: { }
Rules:
# Environment Dynamics
#DoorAutoClose:
#close_frequency: 10
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
#DoneOnAllDirtCleaned:
DoneAtMaxStepsReached:
max_steps: 50

View File

@@ -1,75 +0,0 @@
General:
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_modified
# View Radius; 0 = full observatbility
pomdp_r: 0
# Print all messages and events
verbose: false
# Run tests
tests: false
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
Agents:
#Sigmund:
#Actions:
#- Move4
#Observations:
#- CoinPiles
#- Self
#Positions:
#- (3,1)
#- (1,1)
#- (3,1)
#- (5,1)
#- (3,1)
#- (1,8)
#- (3,1)
#- (5,8)
Wolfgang:
Actions:
- Move4
Observations:
- CoinPiles
- Self
Positions:
- (3,13)
- (2,13)
- (1,13)
- (3,13)
- (1,8)
- (2,6)
- (3,10)
- (4,6)
Entities:
CoinPiles:
coords_or_quantity: (2,13), (3,2) # (2,1), (3,12)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to collect this field, can collect the coin in one action
collect_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
#Doors: { }
Rules:
# Environment Dynamics
#DoorAutoClose:
#close_frequency: 10
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
DoneOnAllCoinsCollected:
#DoneAtMaxStepsReached:
#max_steps: 100
AgentSpawnRule:
spawn_rule: "order"

View File

@@ -26,6 +26,28 @@ Agents:
- Noop
- Charge
- Clean
- DestAction
- DoorUse
- ItemAction
- Move8
Observations:
- Combined:
- Other
- Walls
- GlobalPosition
- Battery
- ChargePods
- DirtPiles
- Destinations
- Doors
- Items
- Inventory
- DropOffLocations
- Maintainers
Herbert:
Actions:
- Noop
- Charge
- Collect
- DestAction
- DoorUse
@@ -39,7 +61,6 @@ Agents:
- Battery
- ChargePods
- CoinPiles
- DirtPiles
- Destinations
- Doors
- Items
@@ -62,10 +83,10 @@ Entities:
# CoinPiles: Entities that can be collected by an agent.
CoinPiles:
coords_or_quantity: 10
initial_amount: 2
initial_amount: 1
collect_amount: 1
coin_spawn_r_var: 0.1
max_global_amount: 20
max_global_amount: 10
max_local_amount: 5
# Destinations: Entities representing target locations for agents.

View File

@@ -5,60 +5,47 @@ General:
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: quadrant
# Radius of Partially observable Markov decision process
pomdp_r: 0 # default 3
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# In the "collect and bring" Scenario one agent aims to pick up all items and drop them at drop-off locations while all
# other agents aim to collect coin piles.
# Define Agents, their actions, observations and spawnpoints
Agents:
# The collect coin agents
Sigmund:
# The clean agents
Agent1:
Actions:
- Move4
#- Collect
#- Noop
- Noop
Observations:
- CoinPiles
- Self
Positions:
- (9,1)
- (4,5)
- (1,1)
- (4,5)
- (9,1)
- (9,9)
Wolfgang:
Agent2:
Actions:
- Move4
#- Collect
#- Noop
- Noop
Observations:
- CoinPiles
- Self
Positions:
- (9,5)
- (4,5)
- (1,1)
- (4,5)
- (9,5)
- (9,9)
Entities:
CoinPiles:
coords_or_quantity: (9,9), (1,1), (4,5) # (4,7), (2,4), (1, 1) #(1, 1), (2,4), (4,7), (7,9), (9,9) # (1, 1), (1,2), (1,3), (2,4), (2,5), (3,6), (4,7), (5,8), (6,8), (7,9), (8,9), (9,9)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to collect this field, can collect the coin in one action
collect_amount: 1
coords_or_quantity: (9,9), (7,9), (4,7), (2,4), (1, 1)
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
randomize: False # If coins should spawn at random positions instead of the positions defined above
# Rules section specifies the rules governing the dynamics of the environment.
Rules:
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
# Can be omitted/ignored if you do not want to take care of collisions at all.
@@ -67,7 +54,5 @@ Rules:
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions.
# The environment stops when all coins are collected
# The environment stops when all coin is cleaned
DoneOnAllCoinsCollected:
#DoneAtMaxStepsReached: # An episode should last for at most max_steps steps
#max_steps: 100

View File

@@ -1,20 +1,20 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_modified
# View Radius; 0 = full observatbility
pomdp_r: 0
level_name: two_rooms_small
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
# Define Agents, their actions, observations and spawnpoints
Agents:
Sigmund:
Agent1:
Actions:
- Move4
- DoorUse
@@ -24,7 +24,7 @@ Agents:
- Self
Positions:
- (3,1)
Wolfgang:
Agent2:
Actions:
- Move4
- DoorUse
@@ -36,10 +36,11 @@ Agents:
- (3,13)
Entities:
# For RL-agent we model the flags as coin piles to be more flexible
CoinPiles:
coords_or_quantity: (2,1), (3,12), (2,13), (3,2) # Static form: auxiliary pile, primary pile, auxiliary pile, ...
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to collect this field, can collect the coin in one action
collect_amount: 1
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
@@ -47,16 +48,13 @@ Entities:
Doors: { }
Rules:
# Environment Dynamics
#DoorAutoClose:
#close_frequency: 10
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
#DoneOnAllDirtCleaned:
# Define the conditions for the environment to stop. Either success or a fail conditions.
# Environment execution stops after 30 steps
DoneAtMaxStepsReached:
max_steps: 50
max_steps: 30

View File

@@ -1,20 +1,20 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_modified
# View Radius; 0 = full observatbility
pomdp_r: 0
level_name: two_rooms_small
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
# Define Agents, their actions, observations and spawnpoints
Agents:
Sigmund:
Agent1:
Actions:
- Move4
- DoorUse
@@ -24,7 +24,7 @@ Agents:
- Self
Positions:
- (3,1)
Wolfgang:
Agent2:
Actions:
- Move4
- DoorUse
@@ -36,10 +36,11 @@ Agents:
- (3,13)
Entities:
# For RL-agent we model the flags as coin piles to be more flexible
CoinPiles:
coords_or_quantity: (3,12), (3,2) # Static form: auxiliary pile, primary pile, auxiliary pile, ...
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to collect this field, can collect the coin in one action
collect_amount: 1
coords_or_quantity: (3,12), (3,2) # Locations of flags
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
@@ -47,16 +48,13 @@ Entities:
Doors: { }
Rules:
# Environment Dynamics
#DoorAutoClose:
#close_frequency: 10
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
#DoneOnAllDirtCleaned:
# Define the conditions for the environment to stop. Either success or a fail conditions
# Environment execution stops after 30 steps
DoneAtMaxStepsReached:
max_steps: 30

View File

@@ -0,0 +1,48 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: quadrant
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# Define Agents, their actions, observations and spawnpoints
Agents:
# The clean agents
Agent1:
Actions:
- Move4
- Noop
Observations:
- CoinPiles
- Self
Positions:
- (9,1)
Entities:
CoinPiles:
coords_or_quantity: (1, 1), (2,4), (4,7), (7,9), (9,9) # Locations of coin piles
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
# Rules section specifies the rules governing the dynamics of the environment.
Rules:
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
# Can be omitted/ignored if you do not want to take care of collisions at all.
WatchCollisions:
done_at_collisions: false
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions.
# The environment stops when all coin is cleaned
DoneOnAllCoinsCollected:

View File

@@ -5,69 +5,45 @@ General:
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: quadrant
# Radius of Partially observable Markov decision process
pomdp_r: 0 # default 3
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# In the "collect and bring" Scenario one agent aims to pick up all items and drop them at drop-off locations while all
# other agents aim to collect coin piles.
# Define Agents, their actions, observations and spawnpoints
Agents:
# The clean agents
#Sigmund:
#Actions:
#- Move4
#Observations:
#- CoinPiles
#- Self
#Positions:
#- (9,1)
#- (1,1)
#- (2,4)
#- (4,7)
#- (6,8)
#- (7,9)
#- (2,4)
#- (4,7)
#- (6,8)
#- (7,9)
#- (9,9)
#- (9,1)
Wolfgang:
Agent1:
Actions:
- Move4
Observations:
- CoinPiles
- Self
Positions:
- (9,5)
Positions: # Each spawnpoint is mapped to one coin pile looping over coords_or_quantity (see below)
- (9,1)
- (1,1)
- (2,4)
- (4,7)
- (6,8)
- (7,9)
- (2,4)
- (4,7)
- (6,8)
- (7,9)
- (9,9)
- (9,5)
- (9,1)
Entities:
CoinPiles:
coords_or_quantity: (1, 1), (2,4), (4,7), (6,8), (7,9), (9,9) # (4,7), (2,4), (1, 1) #(1, 1), (2,4), (4,7), (7,9), (9,9) # (1, 1), (1,2), (1,3), (2,4), (2,5), (3,6), (4,7), (5,8), (6,8), (7,9), (8,9), (9,9)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to collect this field, can collect the coin in one action
collect_amount: 1
coords_or_quantity: (1, 1), (2,4), (4,7), (7,9), (9,9) # Locations of coin piles
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
# Rules section specifies the rules governing the dynamics of the environment.
Rules:
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
# Can be omitted/ignored if you do not want to take care of collisions at all.
@@ -76,10 +52,8 @@ Rules:
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions.
# The environment stops when all coins are collected
# The environment stops when all coin is cleaned
DoneOnAllCoinsCollected:
#DoneAtMaxStepsReached: # An episode should last for at most max_steps steps
#max_steps: 1000
# Define how agents spawn.
# Options: "random" (Spawn agent at a random position from the list of defined positions)

View File

@@ -0,0 +1,50 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_small
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# Define Agents, their actions, observations and spawnpoints
Agents:
Agent1:
Actions:
- Move4
- DoorUse
Observations:
- CoinPiles
- Self
Positions: # Each spawnpoint is mapped to one coin pile looping over coords_or_quantity (see below)
- (3,1)
- (2,1) # spawnpoint only required if agent1 should go to its auxiliary pile
Entities:
CoinPiles:
coords_or_quantity: (2,1), (3,12) # Locations of coin piles
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
Doors: { }
# Rules section specifies the rules governing the dynamics of the environment.
Rules:
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions
# Environment execution stops after 30 steps
DoneAtMaxStepsReached:
max_steps: 30

View File

@@ -0,0 +1,55 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_small
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# Define Agents, their actions, observations and spawnpoints
Agents:
Agent1:
Actions:
- Move4
Observations:
- CoinPiles
- Self
Positions: # Each spawnpoint is mapped to one coin pile looping over coords_or_quantity (see below)
- (5,1)
- (2,1)
- (1,1)
Entities:
CoinPiles:
coords_or_quantity: (3,12) # Locations of coin piles
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
#Doors: { } # We leave out the door during training
Rules:
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions
# The environment stops when all coin is cleaned
DoneOnAllCoinsCollected:
# Define how agents spawn.
# Options: "random" (Spawn agent at a random position from the list of defined positions)
# "first" (Always spawn agent at first position regardless of the other provided positions)
# "order" (Loop through agent positions)
AgentSpawnRule:
spawn_rule: "order"

View File

@@ -0,0 +1,49 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_small
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# Define Agents, their actions, observations and spawnpoints
Agents:
Agent2:
Actions:
- Move4
- DoorUse
Observations:
- CoinPiles
- Self
Positions: # Each spawnpoint is mapped to one coin pile looping over coords_or_quantity (see below)
- (3,13)
Entities:
CoinPiles:
coords_or_quantity: (3,2) # Locations of coin piles
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
Doors: { }
# Rules section specifies the rules governing the dynamics of the environment.
Rules:
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions
# Environment execution stops after 30 steps
DoneAtMaxStepsReached:
max_steps: 30

View File

@@ -0,0 +1,54 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_small
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# Define Agents, their actions, observations and spawnpoints
Agents:
Agent2:
Actions:
- Move4
Observations:
- CoinPiles
- Self
Positions: # Each spawnpoint is mapped to one coin pile looping over coords_or_quantity (see below)
- (3,13)
Entities:
CoinPiles:
coords_or_quantity: (3,2) # Locations of coin piles
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
#Doors: { } # We leave out the door during training
# Rules section specifies the rules governing the dynamics of the environment.
Rules:
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions
# The environment stops when all coin is cleaned
DoneOnAllCoinsCollected:
# Defines how agents spawn.
# Options: "random" (Spawn agent at a random position from the list of defined positions)
# "first" (Always spawn agent at first position regardless of the other provided positions)
# "order" (Loop through agent positions)
AgentSpawnRule:
spawn_rule: "order"

View File

@@ -18,28 +18,28 @@ Agents:
# - Doors
# - Maintainers
# Clones: 0
# Item test agent:
# Actions:
# - Noop
# - Charge
# - DestAction
# - DoorUse
# - ItemAction
# - Move8
# Observations:
# - Combined:
# - Other
# - Walls
# - GlobalPosition
# - Battery
# - ChargePods
# - Destinations
# - Doors
# - Items
# - Inventory
# - DropOffLocations
# - Maintainers
# Clones: 0
Item test agent:
Actions:
- Noop
- Charge
- DestAction
- DoorUse
- ItemAction
- Move8
Observations:
- Combined:
- Other
- Walls
- GlobalPosition
- Battery
- ChargePods
- Destinations
- Doors
- Items
- Inventory
- DropOffLocations
- Maintainers
Clones: 0
# Target test agent:
# Actions:
# - Noop
@@ -56,25 +56,25 @@ Agents:
# - Doors
# - Maintainers
# Clones: 1
Coin test agent:
Actions:
- Noop
- Charge
- Collect
- DoorUse
- Move8
Observations:
- Combined:
- Other
- Walls
- GlobalPosition
- Battery
- ChargePods
- CoinPiles
- Destinations
- Doors
- Maintainers
Clones: 1
# Coin test agent:
# Actions:
# - Noop
# - Charge
# - Collect
# - DoorUse
# - Move8
# Observations:
# - Combined:
# - Other
# - Walls
# - GlobalPosition
# - Battery
# - ChargePods
# - CoinPiles
# - Destinations
# - Doors
# - Maintainers
# Clones: 1
Entities:
@@ -93,7 +93,7 @@ Entities:
# dirt_spawn_r_var: 0.1
# max_global_amount: 20
# max_local_amount: 5
CoinPiles:
DirtPiles:
coords_or_quantity: 10
initial_amount: 2
collect_amount: 1
@@ -134,7 +134,7 @@ Rules:
# respawn_freq: 15
RespawnItems:
respawn_freq: 15
RespawnCoins:
RespawnDirt:
respawn_freq: 15
# Utilities

View File

@@ -5,31 +5,34 @@ General:
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: quadrant
# Radius of Partially observable Markov decision process
pomdp_r: 0 # default 3
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# In the "clean and bring" Scenario one agent aims to pick up all items and drop them at drop-off locations while all
# other agents aim to clean dirt piles.
# Define Agents, their actions, observations and spawnpoints
Agents:
# The coin collect agents
Sigmund:
# The clean agents
Agent1:
Actions:
- Move4
- Collect
- Noop
Observations:
- Walls
- CoinPiles
- Self
Positions:
- (9,1)
Wolfgang:
Agent2:
Actions:
- Move4
- Collect
- Noop
Observations:
- Walls
- CoinPiles
- Self
Positions:
@@ -37,12 +40,13 @@ Agents:
Entities:
CoinPiles:
coords_or_quantity: (9,9), (7,9), (4,7), (2,4), (1, 1) # (4,7), (2,4), (1, 1) # (1, 1), (2,4), (4,7), (7,9), (9,9) # (1, 1), (1,2), (1,3), (2,4), (2,5), (3,6), (4,7), (5,8), (6,8), (7,9), (8,9), (9,9)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to collect this field, can collect the coin in one action
collect_amount: 1
coords_or_quantity: (1, 1), (2,4), (4,7), (7,9), (9,9)
initial_amount: 0.5
clean_amount: 1
coin_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
randomize: False # If coins should spawn at random positions instead of the positions defined above
# Rules section specifies the rules governing the dynamics of the environment.
Rules:
@@ -55,7 +59,5 @@ Rules:
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions.
# The environment stops when all coins are collected
# The environment stops when all coin is cleaned
DoneOnAllCoinsCollected:
#DoneAtMaxStepsReached:
#max_steps: 200

View File

@@ -1,40 +1,38 @@
General:
# RNG-seed to sample the same "random" numbers every time, to make the different runs comparable.
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_modified
# View Radius; 0 = full observatbility
pomdp_r: 0
level_name: two_rooms_small
# View Radius
pomdp_r: 0 # Use custom partial observability setting
# Print all messages and events
verbose: false
# Run tests
tests: false
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
# Define Agents, their actions, observations and spawnpoints
Agents:
Wolfgang:
Agent1:
Actions:
- Move4
- Noop
- DestAction
- DestAction # Action that is performed when the destination is reached
- DoorUse
Observations:
- Walls
- Other
- Doors
- Destination
Positions:
- (3,1) # Agent spawnpoint
Sigmund:
- (3,1)
Agent2:
Actions:
- Move4
- Noop
- DestAction
- DoorUse
Observations:
- Other
- Walls
- Destination
- Doors
@@ -45,10 +43,11 @@ Entities:
Destinations:
spawnrule:
SpawnDestinationsPerAgent:
# Target coordinates
coords_or_quantity:
Wolfgang:
- (3,12) # Target coordinates
Sigmund:
Agent1:
- (3,12)
Agent2:
- (3,2)
Doors: { }
@@ -68,10 +67,12 @@ Rules:
AssignGlobalPositions: { }
DoneAtDestinationReach:
reward_at_done: 1
reward_at_done: 50
# We want to give rewards only, when all targets have been reached.
condition: "all"
# Done Conditions
# Define the conditions for the environment to stop. Either success or a fail conditions
# Environment execution stops after 30 steps
DoneAtMaxStepsReached:
max_steps: 50
max_steps: 30

View File

@@ -1,3 +1,4 @@
import copy
import shutil
from collections import defaultdict
@@ -100,7 +101,7 @@ class Factory(gym.Env):
parsed_entities = self.conf.load_entities()
self.map = LevelParser(self.level_filepath, parsed_entities, self.conf.pomdp_r)
self.levels_that_require_masking = ['two_rooms']
self.levels_that_require_masking = ['two_rooms_small']
# Init for later usage:
# noinspection PyTypeChecker
@@ -274,10 +275,15 @@ class Factory(gym.Env):
global Renderer
self._renderer = Renderer(self.map.level_shape, view_radius=self.conf.pomdp_r, fps=10)
render_entities = self.state.entities.render()
# Remove potential Nones from entities
render_entities_full = self.state.entities.render()
# Hide entities where certain conditions are met (e.g., amount <= 0 for DirtPiles)
render_entities = self.filter_entities(render_entities)
maintain_indices = self.filter_entities(self.state.entities)
if maintain_indices:
render_entities = [render_entity for idx, render_entity in enumerate(render_entities_full) if idx in maintain_indices]
else:
render_entities = render_entities_full
# Mask entities based on dynamic conditions instead of hardcoding level-specific logic
if self.conf['General']['level_name'] in self.levels_that_require_masking:
@@ -291,18 +297,18 @@ class Factory(gym.Env):
def filter_entities(self, entities):
""" Generalized method to filter out entities that shouldn't be rendered. """
if 'DirtPiles' in self.state.entities.keys():
entities = [entity for entity in entities if not (entity.name == 'DirtPiles' and entity.amount <= 0)]
return entities
if 'CoinPiles' in self.state.entities.keys():
all_entities = [item for sublist in [[e for e in entity] for entity in entities] for item in sublist]
return [idx for idx, entity in enumerate(all_entities) if not ('CoinPile' in entity.name and entity.amount <= 0)]
def mask_entities(self, entities):
""" Generalized method to mask entities based on dynamic conditions. """
for entity in entities:
if entity.name == 'CoinPiles':
# entity.name = 'Destinations'
# entity.value = 1
entity.mask = 'Destinations'
entity.mask_value = 1
entity.name = 'Destinations'
entity.value = 1
#entity.mask = 'Destinations'
#entity.mask_value = 1
return entities
def set_recorder(self, recorder):

View File

@@ -43,4 +43,4 @@ class CoinPile(Entity):
return state_dict
def render(self):
return RenderEntity(d.COIN, self.pos, min(0.15 + self.amount, 1.5), 'scale')
return RenderEntity(d.COIN, self.pos, min(0 + self.amount, 1.5), 'scale')

View File

@@ -1,4 +1,6 @@
import ast
import random
from marl_factory_grid.environment import constants as c
from marl_factory_grid.environment.groups.collection import Collection
from marl_factory_grid.modules.coins.entitites import CoinPile
@@ -30,12 +32,12 @@ class CoinPiles(Collection):
"""
Internal Usage
"""
return sum([dirt.amount for dirt in self])
return sum([coin.amount for coin in self])
def __init__(self, *args, max_local_amount=5, collect_amount=1, max_global_amount: int = 20, coords_or_quantity=10,
initial_amount=2, amount_var=0.2, n_var=0.2, **kwargs):
initial_amount=2, amount_var=0.2, n_var=0.2, randomize=False, randomization_seed=0, **kwargs):
"""
A Collection of dirt piles that triggers their spawn.
A Collection of coin piles that triggers their spawn.
:param max_local_amount: The maximum amount of coins allowed in a single pile at one position.
:type max_local_amount: int
@@ -67,6 +69,8 @@ class CoinPiles(Collection):
self.max_local_amount = max_local_amount
self.coords_or_quantity = coords_or_quantity
self.initial_amount = initial_amount
self.randomize = randomize
self.randomized_selection = None
def trigger_spawn(self, state, coords_or_quantity=0, amount=0, ignore_blocking=False) -> [Result]:
if ignore_blocking:
@@ -85,7 +89,17 @@ class CoinPiles(Collection):
else:
n_new = [pos for pos in coords_or_quantity]
amounts = [amount if amount else (self.initial_amount ) # removed rng amount
if self.randomize:
if not self.randomized_selection:
n_new_prime = []
for n in n_new:
if random.random() < 0.5:
n_new_prime.append(n)
n_new = n_new_prime
self.randomized_selection = n_new
else:
n_new = self.randomized_selection
amounts = [amount if amount else (self.initial_amount) # removed rng amount
for _ in range(len(n_new))]
spawn_counter = 0

View File

@@ -1,19 +0,0 @@
import os
import shutil
from pathlib import Path
from marl_factory_grid.utils.tools import ConfigExplainer
def init():
print('Retrieving available options...')
ce = ConfigExplainer()
cwd = Path(os.getcwd())
ce.save_all(cwd / 'full_config.yaml')
template_path = Path(__file__).parent / 'modules' / '_template'
print(f'Available config options saved to: {(cwd / "full_config.yaml").resolve()}')
print('-----------------------------')
print(f'Copying Templates....')
shutil.copytree(template_path, cwd)
print(f'Templates copied to {cwd}"/"{template_path.name}')
print(':wave:')

View File

Before

Width:  |  Height:  |  Size: 291 B

After

Width:  |  Height:  |  Size: 291 B

View File

@@ -9,16 +9,16 @@ import numpy as np
import pandas as pd
import torch
from matplotlib import pyplot as plt
import scipy.stats as stats
from marl_factory_grid.algorithms.rl.utils import _as_torch
from marl_factory_grid.algorithms.marl.utils import _as_torch
from marl_factory_grid.utils.helpers import IGNORED_DF_COLUMNS
from marl_factory_grid.utils.plotting.plotting_utils import prepare_plot
from marl_factory_grid.utils.renderer import Renderer
from marl_factory_grid.utils.utility_classes import RenderEntity
from marl_factory_grid.modules.clean_up import constants as d
from marl_factory_grid.modules.coins import constants as c
def plot_single_run(run_path: Union[str, PathLike], use_tex: bool = False, column_keys=None,
file_key: str = 'monitor', file_ext: str = 'pkl'):
@@ -72,7 +72,6 @@ def plot_single_run(run_path: Union[str, PathLike], use_tex: bool = False, colum
prepare_plot(run_path.parent / f'{run_path.parent.name}_monitor_lineplot.png', df_melted, use_tex=use_tex)
print('Plotting done.')
def plot_routes(factory, agents):
"""
Creates a plot of the agents' actions on the level map by creating a Renderer and Render Entities that hold the
@@ -134,7 +133,7 @@ def plot_action_maps(factory, agents, result_path):
'red_arrow': os.path.join(base_dir, 'utils', 'plotting', 'action_assets', 'red_arrow.png'),
'grey_arrow': os.path.join(base_dir, 'utils', 'plotting', 'action_assets', 'grey_arrow.png'),
'wall': os.path.join(base_dir, 'environment', 'assets', 'wall.png'),
'target_dirt': os.path.join(base_dir, 'utils', 'plotting', 'action_assets', 'target_dirt.png'),
'target_coin': os.path.join(base_dir, 'utils', 'plotting', 'action_assets', 'target_coin.png'),
'spawn_pos': os.path.join(base_dir, 'utils', 'plotting', 'action_assets', 'spawn_pos.png')
}
renderer = Renderer(factory.map.level_shape, cell_size=80, custom_assets_path=assets_path)
@@ -149,20 +148,25 @@ def plot_action_maps(factory, agents, result_path):
wall_entities = [RenderEntity(name='wall', probability=0, pos=np.array(pos)) for pos in wall_positions]
action_entities = list(wall_entities)
target_dirt_pos = factory.state.entities[d.DIRT][action_map_index].pos
target_coin_pos = factory.state.entities[c.COIN][action_map_index].pos
action_entities.append(
RenderEntity(name='target_dirt', probability=0, pos=swap_coordinates(target_dirt_pos)))
RenderEntity(name='target_coin', probability=0, pos=swap_coordinates(target_coin_pos)))
# Render all spawnpoints assigned to current target dirt pile
# Render all spawnpoints assigned to current target coin pile
spawnpoints = list(factory.state.agents_conf.values())[agent_index]['positions']
all_target_dirts = []
if 'DirtPiles' in factory.conf['Entities']:
tuples = ast.literal_eval(factory.conf['Entities']['DirtPiles']['coords_or_quantity'])
all_target_coins = []
if 'CoinPiles' in factory.conf['Entities']:
tuples = ast.literal_eval(factory.conf['Entities']['CoinPiles']['coords_or_quantity'])
for t in tuples:
all_target_dirts.append(t)
all_target_coins.append(t)
if isinstance(all_target_coins[0], int):
temp = all_target_coins
all_target_coins = [tuple(temp)]
assigned_spawn_positions = []
for j in range(len(spawnpoints) // len(all_target_dirts)):
assigned_spawn_positions.append(spawnpoints[j * len(all_target_dirts) + all_target_dirts.index(target_dirt_pos)])
for j in range(len(spawnpoints) // len(all_target_coins)):
assigned_spawn_positions.append(spawnpoints[j * len(all_target_coins) + all_target_coins.index(target_coin_pos)])
for spawn_pos in assigned_spawn_positions:
action_entities.append(RenderEntity(name='spawn_pos', probability=0, pos=swap_coordinates(spawn_pos)))
@@ -258,73 +262,241 @@ direction_mapping = {
}
def plot_reward_development(reward_development, results_path):
smoothed_data = np.convolve(reward_development, np.ones(10) / 10, mode='valid')
def plot_return_development(return_development, results_path, discounted=False):
smoothed_data = np.convolve(return_development, np.ones(10) / 10, mode='valid')
plt.plot(smoothed_data)
plt.ylim([-10, max(smoothed_data) + 20])
plt.title('Smoothed Reward Development')
plt.title('Smoothed Return Development' if not discounted else 'Smoothed Discounted Return Development')
plt.xlabel('Episode')
plt.ylabel('Reward')
plt.savefig(f"{results_path}/smoothed_reward_development.png")
plt.ylabel('Return' if not discounted else "Discounted Return")
plt.savefig(f"{results_path}/smoothed_return_development.png"
if not discounted else f"{results_path}/smoothed_discounted_return_development.png")
plt.show()
def plot_return_development_change(return_change_development, results_path):
plt.plot(return_change_development)
plt.title('Return Change Development')
plt.xlabel('Episode')
plt.ylabel('Delta Return')
plt.savefig(f"{results_path}/return_change_development.png")
plt.show()
def plot_collected_coins_per_step():
# Observed behaviour for multi-agent setting consisting of run0 and run0
cleaned_dirt_per_step_emergent = [0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5]
cleaned_dirt_per_step = [0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 5] # RL and TSP
def mean_confidence_interval(data, confidence=0.95):
a = np.array(data)
n = np.sum(~np.isnan(a), axis=0)
mean = np.nanmean(a, axis=0)
se = np.nanstd(a, axis=0) / np.sqrt(n)
h = se * 1.96 # For 95% confidence interval
return mean, mean - h, mean + h
def load_metrics(file_path, key):
with open(file_path, "rb") as pickle_file:
metrics = pickle.load(pickle_file)
return metrics[key][0]
def pad_runs(runs):
max_length = max(len(run) for run in runs)
padded_runs = [np.pad(np.array(run, dtype=float), (0, max_length - len(run)), constant_values=np.nan) for run in runs]
return padded_runs
def get_reached_flags_metrics(runs):
# Find the step where flag 1 and flag 2 are reached
flag1_steps = []
flag2_steps = []
for run in runs:
if 1 in run:
flag1_steps.append(run.index(1))
if 2 in run:
flag2_steps.append(run.index(2))
print(flag1_steps)
print(flag2_steps)
# Calculate the mean steps and confidence intervals
mean_flag1_steps = np.mean(flag1_steps)
mean_flag2_steps = np.mean(flag2_steps)
std_flag1_steps = np.std(flag1_steps, ddof=1)
std_flag2_steps = np.std(flag2_steps, ddof=1)
n_flag1 = len(flag1_steps)
n_flag2 = len(flag2_steps)
confidence_level = 0.95
t_critical_flag1 = stats.t.ppf((1 + confidence_level) / 2, n_flag1 - 1)
t_critical_flag2 = stats.t.ppf((1 + confidence_level) / 2, n_flag2 - 1)
margin_of_error_flag1 = t_critical_flag1 * (std_flag1_steps / np.sqrt(n_flag1))
margin_of_error_flag2 = t_critical_flag2 * (std_flag2_steps / np.sqrt(n_flag2))
# Mean steps including baseline
mean_steps = [0, mean_flag1_steps, mean_flag2_steps]
flags_reached = [0, 1, 2]
error_bars = [0, margin_of_error_flag1, margin_of_error_flag2]
return mean_steps, flags_reached, error_bars
def plot_collected_coins_per_step(rl_runs_names, tsp_runs_names, results_path):
# Observed behaviour for multi-agent setting consisting of run0 and run0
collected_coins_per_step_emergent = [0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5]
# Load RL and TSP data from multiple runs
rl_runs = [load_metrics(results_path + f"/{rl_run}/metrics", "cleaned_dirt_piles_per_step") for rl_run in rl_runs_names]
tsp_runs = [load_metrics(results_path + f"/{tsp_run}/metrics", "cleaned_dirt_piles_per_step") for tsp_run in tsp_runs_names]
# Pad runs to handle heterogeneous lengths
rl_runs = pad_runs(rl_runs)
tsp_runs = pad_runs(tsp_runs)
# Calculate mean and confidence intervals
mean_rl, lower_rl, upper_rl = mean_confidence_interval(rl_runs)
mean_tsp, lower_tsp, upper_tsp = mean_confidence_interval(tsp_runs)
# Plot the mean and confidence intervals
plt.fill_between(range(1, len(mean_rl) + 1), lower_rl, upper_rl, color='green', alpha=0.2)
plt.step(range(1, len(mean_rl) + 1), mean_rl, color='green', linewidth=3, label='Prevented (RL)')
plt.fill_between(range(1, len(mean_tsp) + 1), lower_tsp, upper_tsp, color='darkorange', alpha=0.2)
plt.step(range(1, len(mean_tsp) + 1), mean_tsp, linestyle='dotted', color='darkorange', linewidth=3, label='Prevented (TSP)')
plt.step(range(1, len(collected_coins_per_step_emergent) + 1), collected_coins_per_step_emergent, linestyle='--', color='darkred', linewidth=3, label='Emergent')
plt.step(range(1, len(cleaned_dirt_per_step) + 1), cleaned_dirt_per_step, color='green', linewidth=3, label='Prevented (RL)')
plt.step(range(1, len(cleaned_dirt_per_step_emergent) + 1), cleaned_dirt_per_step_emergent, linestyle='--', color='darkred', linewidth=3, label='Emergent')
plt.step(range(1, len(cleaned_dirt_per_step) + 1), cleaned_dirt_per_step, linestyle='dotted', color='darkorange', linewidth=3, label='Prevented (TSP)')
plt.xlabel("Environment step", fontsize=20)
plt.ylabel("Collected Coins", fontsize=20)
yint = range(min(cleaned_dirt_per_step), max(cleaned_dirt_per_step) + 1)
plt.yticks(yint, fontsize=17)
plt.xticks(range(1, len(cleaned_dirt_per_step_emergent) + 1), fontsize=17)
plt.xticks(range(1, len(collected_coins_per_step_emergent) + 1), fontsize=17)
plt.yticks(fontsize=17)
frame1 = plt.gca()
# Only display every 5th tick label
for idx, xlabel_i in enumerate(frame1.axes.get_xticklabels()):
if (idx + 1) % 5 != 0:
xlabel_i.set_visible(False)
xlabel_i.set_fontsize(0.0)
# Change order of labels in legend
handles, labels = frame1.get_legend_handles_labels()
order = [0, 2, 1]
plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order], prop={'size': 20})
fig = plt.gcf()
fig.set_size_inches(8, 7)
plt.savefig("../study_out/number_of_collected_coins.pdf")
plt.savefig(f"{results_path}/number_of_collected_coins.pdf")
plt.show()
def plot_reached_flags_per_step():
# Observed behaviour for multi-agent setting consisting of runs 1 + 2
reached_flags_per_step_emergent = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
reached_flags_per_step_RL = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2]
reached_flags_per_step_TSP = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]
def plot_reached_flags_per_step(rl_runs_names, tsp_runs_names, results_path):
reached_flags_per_step_emergent = [0] * 32 # Adjust based on your data length
# Load RL and TSP data from multiple runs
rl_runs = [load_metrics(results_path + f"/{rl_run}/metrics", "cleaned_dirt_piles_per_step") for rl_run in rl_runs_names]
rl_runs = [[pile - 1 for pile in run] for run in rl_runs] # Subtract the auxiliary pile
tsp_runs = [load_metrics(results_path + f"/{tsp_run}/metrics", "reached_flags") for tsp_run in tsp_runs_names]
# Pad runs to handle heterogeneous lengths
rl_runs = pad_runs(rl_runs)
tsp_runs = pad_runs(tsp_runs)
# Calculate mean and confidence intervals
mean_rl, lower_rl, upper_rl = mean_confidence_interval(rl_runs)
mean_tsp, lower_tsp, upper_tsp = mean_confidence_interval(tsp_runs)
# Plot the mean and confidence intervals
plt.fill_between(range(1, len(mean_rl) + 1), lower_rl, upper_rl, color='green', alpha=0.2)
plt.step(range(1, len(mean_rl) + 1), mean_rl, color='green', linewidth=3, label='Prevented (RL)')
plt.fill_between(range(1, len(mean_tsp) + 1), lower_tsp, upper_tsp, color='darkorange', alpha=0.2)
plt.step(range(1, len(mean_tsp) + 1), mean_tsp, linestyle='dotted', color='darkorange', linewidth=3, label='Prevented (TSP)')
plt.step(range(1, len(reached_flags_per_step_emergent) + 1), reached_flags_per_step_emergent, linestyle='--', color='darkred', linewidth=3, label='Emergent')
plt.step(range(1, len(reached_flags_per_step_RL) + 1), reached_flags_per_step_RL, color='green', linewidth=3, label='Prevented (RL)')
plt.step(range(1, len(reached_flags_per_step_emergent) + 1), reached_flags_per_step_emergent, linestyle='--', color='darkred', linewidth=3, label='Emergent')
plt.step(range(1, len(reached_flags_per_step_TSP) + 1), reached_flags_per_step_TSP, linestyle='dotted', color='darkorange', linewidth=3, label='Prevented (TSP)')
plt.xlabel("Environment step", fontsize=20)
plt.ylabel("Reached Flags", fontsize=20)
yint = range(min(reached_flags_per_step_RL), max(reached_flags_per_step_RL) + 1)
plt.yticks(yint, fontsize=17)
plt.xticks(range(1, len(reached_flags_per_step_emergent) + 1), fontsize=17)
plt.yticks(fontsize=17)
frame1 = plt.gca()
# Only display every 5th tick label
for idx, xlabel_i in enumerate(frame1.axes.get_xticklabels()):
if (idx + 1) % 5 != 0:
xlabel_i.set_visible(False)
xlabel_i.set_fontsize(0.0)
# Change order of labels in legend
handles, labels = frame1.get_legend_handles_labels()
order = [0, 2, 1]
plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order], prop={'size': 20})
fig = plt.gcf()
fig.set_size_inches(8, 7)
plt.savefig("../study_out/number_of_reached_flags.pdf")
plt.savefig(f"{results_path}/number_of_reached_flags.pdf")
plt.show()
def plot_performance_distribution_on_coin_quadrant(dirt_quadrant, results_path, grid=False):
plt.rcParams["figure.autolayout"] = True
plt.rcParams["axes.edgecolor"] = "black"
plt.rcParams["axes.linewidth"] = 5.0
fig = plt.figure(figsize=(18, 13))
rl_color = '#5D3A9B'
tsp_color = '#E66100'
# Boxplot
boxprops = dict(linestyle='-', linewidth=4)
whiskerprops = dict(linestyle='-', linewidth=4)
capprops = dict(linestyle='-', linewidth=4)
flierprops = dict(marker='o', markersize=14, markeredgewidth=4,
linestyle='none')
medianprops = dict(linestyle='-', linewidth=4, color='#40B0A6')
meanpointprops = dict(marker='D', markeredgecolor='black',
markerfacecolor='firebrick')
meanlineprops = dict(linestyle='-.', linewidth=4, color='purple')
bp = plt.boxplot([dirt_quadrant["RL_emergence"], dirt_quadrant["RL_prevented"], dirt_quadrant["TSP_emergence"],
dirt_quadrant["TSP_prevented"]], patch_artist=True, widths=0.6, flierprops=flierprops,
boxprops=boxprops, medianprops=medianprops, meanprops=meanlineprops,
whiskerprops=whiskerprops, capprops=capprops,
meanline=True, showmeans=False, positions=[1, 2.5, 4, 5.5])
colors = [rl_color, rl_color, tsp_color, tsp_color]
for bplot, color in zip([bp], [colors, colors]):
for patch, color in zip(bplot['boxes'], color):
patch.set_facecolor(color)
plt.tick_params(width=5, length=10)
plt.xticks([1, 2.5, 4, 5.5], labels=['Emergent \n (RL)', 'Prevented \n (RL)', 'Emergent \n (TSP)', 'Prevented \n (TSP)'], fontsize=50)
plt.yticks(fontsize=50)
plt.ylabel('No. environment steps', fontsize=50)
plt.xlabel("Agent Types", fontsize=50)
plt.grid(grid)
plt.tight_layout()
plt.savefig(f"{results_path}/number_of_collected_coins_distribution{'_grid' if grid else ''}.pdf")
plt.show()
def plot_reached_flags_per_step_with_error(mean_steps_RL_prevented, error_bars_RL_prevented,
mean_steps_TSP_prevented, error_bars_TSP_prevented, flags_reached,
results_path, grid=False):
plt.rcParams["figure.autolayout"] = True
plt.rcParams["axes.edgecolor"] = "black"
plt.rcParams["axes.linewidth"] = 5.0
fig = plt.figure(figsize=(18, 13))
# Line plot with error bars
plt.plot(range(30), [0 for _ in range(30)], color='gray', linestyle='--', linewidth=7,
label='Emergent')
plt.errorbar(mean_steps_RL_prevented, flags_reached, xerr=error_bars_RL_prevented, fmt='-o', ecolor='r', capsize=10, capthick=5,
markersize=20, label='Prevented (RL) + CI', color='#5D3A9B', linewidth=7)
plt.errorbar(mean_steps_TSP_prevented, flags_reached, xerr=error_bars_TSP_prevented, fmt='-o', ecolor='r', capsize=10, capthick=5,
markersize=20, label='Prevented (TSP) + CI', color='#E66100', linewidth=7)
plt.tick_params(width=5, length=10)
plt.xticks(fontsize=50)
plt.yticks(flags_reached, fontsize=50)
plt.xlabel("Avg. environment step", fontsize=50)
plt.ylabel('Reached flags', fontsize=50)
plt.legend(fontsize=45, loc='best', bbox_to_anchor=(0.38, 0.38))
plt.grid(grid)
plt.savefig(f"{results_path}/number_of_reached_flags{'_grid' if grid else ''}.pdf")
plt.show()