Agent Trained on Doors

This commit is contained in:
steffen-illium
2021-06-17 14:27:18 +02:00
parent 26d7705e19
commit d9d8784338
10 changed files with 125 additions and 28 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -22,10 +22,11 @@ class BaseFactory(gym.Env):
@property
def observation_space(self):
agent_slice = self.n_agents if self.omit_agent_slice_in_obs else 0
agent_slice = 1 if self.combin_agent_slices_in_obs else agent_slice
agent_slice = (self.n_agents - 1) if self.combin_agent_slices_in_obs else agent_slice
if self.pomdp_radius:
return spaces.Box(low=0, high=1, shape=(self._state.shape[0] - agent_slice, self.pomdp_radius * 2 + 1,
self.pomdp_radius * 2 + 1), dtype=np.float32)
shape = (self._state.shape[0] - agent_slice, self.pomdp_radius * 2 + 1, self.pomdp_radius * 2 + 1)
space = spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
return space
else:
shape = [x-agent_slice if idx == 0 else x for idx, x in enumerate(self._state.shape)]
space = spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
@ -194,6 +195,14 @@ class BaseFactory(gym.Env):
if self.done_at_collision and collision_vec.any():
done = True
# Step the door close intervall
agents_pos = [agent.pos for agent in self._agent_states]
for door_i, door in enumerate(self._door_states):
if door.is_open and door.time_to_close and door.pos not in agents_pos:
door.time_to_close -= 1
elif door.is_open and not door.time_to_close and door.pos not in agents_pos:
door.use()
reward, info = self.calculate_reward(self._agent_states)
if self._steps >= self.max_steps:
@ -256,7 +265,7 @@ class BaseFactory(gym.Env):
x_new = x + x_diff
y_new = y + y_diff
if h.DOORS in self._state_slices.values():
if h.DOORS in self._state_slices.values() and self._agent_states[agent_i]._last_pos != (-1, -1):
door = [door for door in self._door_states if door.pos == (x, y)]
if door:
door = door[0]
@ -326,7 +335,7 @@ class BaseFactory(gym.Env):
# Returns: Reward, Info
raise NotImplementedError
def render(self):
def render(self, mode='human'):
raise NotImplementedError
def save_params(self, filepath: Path):

View File

@ -7,7 +7,7 @@
###x#######x###
#1111##2222222#
#11111#2222#22#
#11111D2222222#
#11111x2222222#
#11111#2222222#
#11111#2222222#
###############

View File

@ -42,8 +42,6 @@ class Renderer:
self.font.set_bold(1.0)
print('Loading System font with pygame.font.Font took', time.time() - now)
def fill_bg(self):
self.screen.fill(Renderer.BG_COLOR)
if self.grid_lines:
@ -71,9 +69,9 @@ class Renderer:
def load_asset(self, path, factor=1.0):
s = int(factor*self.cell_size)
wall_img = pygame.image.load(path).convert_alpha()
wall_img = pygame.transform.smoothscale(wall_img, (s, s))
return wall_img
asset = pygame.image.load(path).convert_alpha()
asset = pygame.transform.smoothscale(asset, (s, s))
return asset
def render(self, entities):
for event in pygame.event.get():
@ -82,7 +80,10 @@ class Renderer:
sys.exit()
self.fill_bg()
blits = deque()
for entity in entities:
for entity in [x for x in entities if 'door' in x.name]:
bp = self.blit_params(entity)
blits.append(bp)
for entity in [x for x in entities if 'door' not in x.name]:
bp = self.blit_params(entity)
blits.append(bp)
if entity.name.lower() == 'agent':
@ -106,7 +107,6 @@ class Renderer:
for blit in blits:
self.screen.blit(**blit)
pygame.display.flip()
self.clock.tick(self.fps)
@ -114,6 +114,6 @@ class Renderer:
if __name__ == '__main__':
renderer = Renderer(fps=2, cell_size=40)
for i in range(15):
entity = Entity('agent', [5, i], 1, 'idle', 'idle')
renderer.render([entity])
entity_1 = Entity('agent', [5, i], 1, 'idle', 'idle')
renderer.render([entity_1])

View File

@ -14,7 +14,7 @@ CLEAN_UP_ACTION = 'clean_up'
class DirtProperties(NamedTuple):
clean_amount: int = 2 # How much does the robot clean with one action.
clean_amount: int = 2 # How much does the robot clean with one actions.
max_spawn_ratio: float = 0.2 # On max how much tiles does the dirt spawn in percent.
gain_amount: float = 0.5 # How much dirt does spawn per tile
spawn_frequency: int = 5 # Spawn Frequency in Steps
@ -41,7 +41,7 @@ class SimpleFactory(BaseFactory):
self._renderer = None # expensive - don't use it when not required !
super(SimpleFactory, self).__init__(*args, additional_slices=['dirt'], **kwargs)
def render(self):
def render(self, mode='human'):
if not self._renderer: # lazy init
height, width = self._state.shape[1:]
@ -67,7 +67,11 @@ class SimpleFactory(BaseFactory):
for i, agent in enumerate(self._agent_states):
name, state = asset_str(agent)
agents.append(Entity(name, agent.pos, 1, 'none', state, i+1))
self._renderer.render(dirt+walls+agents)
doors = []
for i, door in enumerate(self._door_states):
name, state = 'door_open' if door.is_open else 'door_closed', 'blank'
agents.append(Entity(name, door.pos, 1, 'none', state, i+1))
self._renderer.render(dirt+walls+agents+doors)
def spawn_dirt(self) -> None:
if not np.argwhere(self._state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0] > self.dirt_properties.max_global_amount:
@ -156,6 +160,7 @@ class SimpleFactory(BaseFactory):
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
f'at {agent_state.pos}, but was unsucsessfull.')
info_dict.update({f'agent_{agent_state.i}_failed_action': 1})
info_dict.update({f'agent_{agent_state.i}_failed_dirt_cleanup': 1})
elif self._actions.is_moving_action(agent_state.action):
if agent_state.action_valid:
@ -165,6 +170,17 @@ class SimpleFactory(BaseFactory):
# self.print('collision')
reward -= 0.01
elif self._actions.is_door_usage(agent_state.action):
if agent_state.action_valid:
reward += 0.1
self.print(f'Agent {agent_state.i} did just use the door at {agent_state.pos}.')
info_dict.update(door_used=1)
else:
self.print(f'Agent {agent_state.i} just tried to use a door '
f'at {agent_state.pos}, but was unsucsessfull.')
info_dict.update({f'agent_{agent_state.i}_failed_action': 1})
info_dict.update({f'agent_{agent_state.i}_failed_door_open': 1})
else:
info_dict.update(no_op=1)
reward -= 0.00
@ -184,7 +200,7 @@ class SimpleFactory(BaseFactory):
if __name__ == '__main__':
render = True
render = False
move_props = MovementProperties(allow_diagonal_movement=True, allow_square_movement=True)
dirt_props = DirtProperties()
@ -193,8 +209,9 @@ if __name__ == '__main__':
pomdp_radius=3)
n_actions = factory.action_space.n - 1
_ = factory.observation_space
for epoch in range(100):
for epoch in range(10000):
random_actions = [[random.randint(0, n_actions) for _ in range(factory.n_agents)] for _ in range(200)]
env_state = factory.reset()
r = 0

View File

View File

@ -0,0 +1,68 @@
from typing import List, Union
import gym
class Entities():
def __init__(self):
pass
# noinspection PyAttributeOutsideInit
class BaseFactory(gym.Env):
def __enter__(self):
return self if self.frames_to_stack == 0 else FrameStack(self, self.frames_to_stack)
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def __init__(self, level_name='simple', n_agents=1, max_steps=int(5e2), pomdp_radius: Union[None, int] = 0,
movement_properties: MovementProperties = MovementProperties(),
combin_agent_slices_in_obs: bool = False, frames_to_stack=0,
omit_agent_slice_in_obs=False, **kwargs):
assert (combin_agent_slices_in_obs != omit_agent_slice_in_obs) or \
(not combin_agent_slices_in_obs and not omit_agent_slice_in_obs), \
'Both options are exclusive'
assert frames_to_stack != 1 and frames_to_stack >= 0, "'frames_to_stack' cannot be negative or 1."
self.movement_properties = movement_properties
self.level_name = level_name
self.n_agents = n_agents
self.max_steps = max_steps
self.pomdp_radius = pomdp_radius
self.combin_agent_slices_in_obs = combin_agent_slices_in_obs
self.omit_agent_slice_in_obs = omit_agent_slice_in_obs
self.frames_to_stack = frames_to_stack
self.done_at_collision = False
self._state_slices = StateSlices()
level_filepath = Path(__file__).parent / h.LEVELS_DIR / f'{self.level_name}.txt'
parsed_level = h.parse_level(level_filepath)
self._level = h.one_hot_level(parsed_level)
parsed_doors = h.one_hot_level(parsed_level, h.DOOR)
if parsed_doors.any():
self._doors = parsed_doors
level_slices = ['level', 'doors']
can_use_doors = True
else:
level_slices = ['level']
can_use_doors = False
offset = len(level_slices)
self._state_slices.register_additional_items([*level_slices,
*[f'agent#{i}' for i in range(offset, n_agents + offset)]])
if 'additional_slices' in kwargs:
self._state_slices.register_additional_items(kwargs.get('additional_slices'))
self._zones = Zones(parsed_level)
self._actions = Actions(self.movement_properties, can_use_doors=can_use_doors)
self._actions.register_additional_items(self.additional_actions)
self.reset()
def step(self, actions: Union[int, List[int]]):
actions = actions if isinstance(actions, list) else [actions]
self.entities.step()

View File

@ -108,10 +108,12 @@ class AgentState:
class DoorState:
def __init__(self, i: int, pos: Tuple[int, int], closed_on_init=True):
def __init__(self, i: int, pos: Tuple[int, int], closed_on_init=True, auto_close_interval=10):
self.i = i
self.pos = pos
self._state = self._state = IS_CLOSED if closed_on_init else IS_OPEN
self.auto_close_interval = auto_close_interval
self.time_to_close = -1
@property
def is_closed(self):
@ -126,8 +128,11 @@ class DoorState:
return self._state
def use(self):
self._state: str = IS_CLOSED if self._state == IS_OPEN else IS_OPEN
if self._state == IS_OPEN:
self._state = IS_CLOSED
else:
self._state = IS_OPEN
self.time_to_close = self.auto_close_interval
class Register:

View File

@ -111,7 +111,7 @@ if __name__ == '__main__':
kwargs = dict(ent_coef=0.01)
elif modeL_type.__name__ in ["RegDQN", "DQN", "QRDQN"]:
kwargs = dict(buffer_size=50000,
learning_starts=25000,
learning_starts=64,
batch_size=64,
target_update_interval=5000,
exploration_fraction=0.25,

View File

@ -14,14 +14,14 @@ warnings.filterwarnings('ignore', category=UserWarning)
if __name__ == '__main__':
model_name = 'PPO_1623052687'
model_name = 'A2C_1623923982'
run_id = 0
out_path = Path(__file__).parent / 'debug_out'
model_path = out_path / model_name
with (model_path / f'env_{model_name}.yaml').open('r') as f:
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
with SimpleFactory(level_name='rooms', **env_kwargs) as env:
with SimpleFactory(**env_kwargs) as env:
# Edit THIS:
model_files = list(natsorted((model_path / f'{run_id}_{model_name}').rglob('model_*.zip')))
@ -30,5 +30,3 @@ if __name__ == '__main__':
model = PPO.load(this_model)
evaluation_result = evaluate_policy(model, env, n_eval_episodes=100, deterministic=False, render=True)
print(evaluation_result)