mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-06-18 18:52:52 +02:00
renaming
This commit is contained in:
239
marl_factory_grid/utils/helpers.py
Normal file
239
marl_factory_grid/utils/helpers.py
Normal file
@ -0,0 +1,239 @@
|
||||
import importlib
|
||||
|
||||
from collections import defaultdict
|
||||
from pathlib import PurePath, Path
|
||||
from typing import Union, Dict, List
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from marl_factory_grid.environment import constants as c
|
||||
|
||||
"""
|
||||
This file is used for:
|
||||
1. string based definition
|
||||
Use a class like `Constants`, to define attributes, which then reveal strings.
|
||||
These can be used for naming convention along the environments as well as keys for mappings such as dicts etc.
|
||||
When defining new envs, use class inheritance.
|
||||
|
||||
2. utility function definition
|
||||
There are static utility functions which are not bound to a specific environment.
|
||||
In this file they are defined to be used across the entire package.
|
||||
"""
|
||||
|
||||
|
||||
LEVELS_DIR = 'modules/levels' # for use in studies and experiments
|
||||
STEPS_START = 1 # Define where to the stepcount; which is the first step
|
||||
|
||||
# Not used anymore? Clean!
|
||||
# TO_BE_AVERAGED = ['dirt_amount', 'dirty_tiles']
|
||||
IGNORED_DF_COLUMNS = ['Episode', 'Run', # For plotting, which values are ignored when loading monitor files
|
||||
'train_step', 'step', 'index', 'dirt_amount', 'dirty_tile_count', 'terminal_observation',
|
||||
'episode']
|
||||
|
||||
POS_MASK = np.asarray([[[-1, -1], [0, -1], [1, -1]],
|
||||
[[-1, 0], [0, 0], [1, 0]],
|
||||
[[-1, 1], [0, 1], [1, 1]]])
|
||||
|
||||
MOVEMAP = defaultdict(lambda: (0, 0),
|
||||
{c.NORTH: (-1, 0), c.NORTHEAST: (-1, 1),
|
||||
c.EAST: (0, 1), c.SOUTHEAST: (1, 1),
|
||||
c.SOUTH: (1, 0), c.SOUTHWEST: (1, -1),
|
||||
c.WEST: (0, -1), c.NORTHWEST: (-1, -1)
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class ObservationTranslator:
|
||||
|
||||
def __init__(self, this_named_observation_space: Dict[str, dict],
|
||||
*per_agent_named_obs_spaces: Dict[str, dict],
|
||||
placeholder_fill_value: Union[int, str, None] = None):
|
||||
"""
|
||||
This is a helper class, which converts agent observations from joined environments.
|
||||
For example, agent trained in different environments may expect different observations.
|
||||
This class translates from larger observations spaces to smaller.
|
||||
A string _identifier based approach is used.
|
||||
Currently, it is not possible to mix different obs shapes.
|
||||
|
||||
|
||||
:param this_named_observation_space: `Named observation space` of the joined environment.
|
||||
:type this_named_observation_space: Dict[str, dict]
|
||||
|
||||
:param per_agent_named_obs_spaces: `Named observation space` one for each agent. Overloaded.
|
||||
type per_agent_named_obs_spaces: Dict[str, dict]
|
||||
|
||||
:param placeholder_fill_value: Currently not fully implemented!!!
|
||||
:type placeholder_fill_value: Union[int, str] = 'N')
|
||||
"""
|
||||
|
||||
if isinstance(placeholder_fill_value, str):
|
||||
if placeholder_fill_value.lower() in ['normal', 'n']:
|
||||
self.random_fill = np.random.normal
|
||||
elif placeholder_fill_value.lower() in ['uniform', 'u']:
|
||||
self.random_fill = np.random.uniform
|
||||
else:
|
||||
raise ValueError('Please chooe between "uniform" or "normal" ("u", "n").')
|
||||
elif isinstance(placeholder_fill_value, int):
|
||||
raise NotImplementedError('"Future Work."')
|
||||
else:
|
||||
self.random_fill = None
|
||||
|
||||
self._this_named_obs_space = this_named_observation_space
|
||||
self._per_agent_named_obs_space = list(per_agent_named_obs_spaces)
|
||||
|
||||
def translate_observation(self, agent_idx: int, obs):
|
||||
target_obs_space = self._per_agent_named_obs_space[agent_idx]
|
||||
translation = dict()
|
||||
for name, idxs in target_obs_space.items():
|
||||
if name in self._this_named_obs_space:
|
||||
for target_idx, this_idx in zip(idxs, self._this_named_obs_space[name]):
|
||||
taken_slice = np.take(obs, [this_idx], axis=1 if obs.ndim == 4 else 0)
|
||||
translation[target_idx] = taken_slice
|
||||
elif random_fill := self.random_fill:
|
||||
for target_idx in idxs:
|
||||
translation[target_idx] = random_fill(size=obs.shape[:-3] + (1,) + obs.shape[-2:])
|
||||
else:
|
||||
for target_idx in idxs:
|
||||
translation[target_idx] = np.zeros(shape=(obs.shape[:-3] + (1,) + obs.shape[-2:]))
|
||||
|
||||
translation = dict(sorted(translation.items()))
|
||||
return np.concatenate(list(translation.values()), axis=-3)
|
||||
|
||||
def translate_observations(self, observations: List[ArrayLike]):
|
||||
return [self.translate_observation(idx, observation) for idx, observation in enumerate(observations)]
|
||||
|
||||
def __call__(self, observations):
|
||||
return self.translate_observations(observations)
|
||||
|
||||
|
||||
class ActionTranslator:
|
||||
|
||||
def __init__(self, target_named_action_space: Dict[str, int], *per_agent_named_action_space: Dict[str, int]):
|
||||
"""
|
||||
This is a helper class, which converts agent action spaces to a joined environments action space.
|
||||
For example, agent trained in different environments may have different action spaces.
|
||||
This class translates from smaller individual agent action spaces to larger joined spaces.
|
||||
A string _identifier based approach is used.
|
||||
|
||||
:param target_named_action_space: Joined `Named action space` for the current environment.
|
||||
:type target_named_action_space: Dict[str, dict]
|
||||
|
||||
:param per_agent_named_action_space: `Named action space` one for each agent. Overloaded.
|
||||
:type per_agent_named_action_space: Dict[str, dict]
|
||||
"""
|
||||
|
||||
self._target_named_action_space = target_named_action_space
|
||||
if isinstance(per_agent_named_action_space, (list, tuple)):
|
||||
self._per_agent_named_action_space = per_agent_named_action_space
|
||||
else:
|
||||
self._per_agent_named_action_space = list(per_agent_named_action_space)
|
||||
self._per_agent_idx_actions = [{idx: a for a, idx in x.items()} for x in self._per_agent_named_action_space]
|
||||
|
||||
def translate_action(self, agent_idx: int, action: int):
|
||||
named_action = self._per_agent_idx_actions[agent_idx][action]
|
||||
translated_action = self._target_named_action_space[named_action]
|
||||
return translated_action
|
||||
|
||||
def translate_actions(self, actions: List[int]):
|
||||
return [self.translate_action(idx, action) for idx, action in enumerate(actions)]
|
||||
|
||||
def __call__(self, actions):
|
||||
return self.translate_actions(actions)
|
||||
|
||||
|
||||
# Utility functions
|
||||
def parse_level(path):
|
||||
"""
|
||||
Given the path to a strin based `level` or `map` representation, this function reads the content.
|
||||
Cleans `space`, checks for equal length of each row and returns a list of lists.
|
||||
|
||||
:param path: Path to the `level` or `map` file on harddrive.
|
||||
:type path: os.Pathlike
|
||||
|
||||
:return: The read string representation of the `level` or `map`
|
||||
:rtype: List[List[str]]
|
||||
"""
|
||||
with path.open('r') as lvl:
|
||||
level = list(map(lambda x: list(x.strip()), lvl.readlines()))
|
||||
if len(set([len(line) for line in level])) > 1:
|
||||
raise AssertionError('Every row of the level string must be of equal length.')
|
||||
return level
|
||||
|
||||
|
||||
def one_hot_level(level, symbol: str):
|
||||
"""
|
||||
Given a string based level representation (list of lists, see function `parse_level`), this function creates a
|
||||
binary numpy array or `grid`. Grid values that equal `wall_char` become of `Constants.OCCUPIED_CELL` value.
|
||||
Can be changed to filter for any symbol.
|
||||
|
||||
:param level: String based level representation (list of lists, see function `parse_level`).
|
||||
:param symbol: List[List[str]]
|
||||
|
||||
:return: Binary numpy array
|
||||
:rtype: np.typing._array_like.ArrayLike
|
||||
"""
|
||||
|
||||
grid = np.array(level)
|
||||
binary_grid = np.zeros(grid.shape, dtype=np.int8)
|
||||
binary_grid[grid == symbol] = c.VALUE_OCCUPIED_CELL
|
||||
return binary_grid
|
||||
|
||||
|
||||
def is_move(action_name: str):
|
||||
return action_name in MOVEMAP.keys()
|
||||
|
||||
|
||||
def asset_str(agent):
|
||||
"""
|
||||
FIXME @ romue
|
||||
"""
|
||||
# What does this abonimation do?
|
||||
# if any([x is None for x in [cls._slices[j] for j in agent.collisions]]):
|
||||
# print('error')
|
||||
if step_result := agent.step_result:
|
||||
action = step_result['action_name']
|
||||
valid = step_result['action_valid']
|
||||
col_names = [x.name for x in step_result['collisions']]
|
||||
if any(c.AGENT in name for name in col_names):
|
||||
return 'agent_collision', 'blank'
|
||||
elif not valid or c.LEVEL in col_names or c.AGENT in col_names:
|
||||
return c.AGENT, 'invalid'
|
||||
elif valid and not is_move(action):
|
||||
return c.AGENT, 'valid'
|
||||
elif valid and is_move(action):
|
||||
return c.AGENT, 'move'
|
||||
else:
|
||||
return c.AGENT, 'idle'
|
||||
else:
|
||||
return c.AGENT, 'idle'
|
||||
|
||||
|
||||
def locate_and_import_class(class_name, folder_path: Union[str, PurePath] = ''):
|
||||
"""Locate an object by name or dotted path, importing as necessary."""
|
||||
import sys
|
||||
sys.path.append("../../environment")
|
||||
folder_path = Path(folder_path).resolve()
|
||||
module_paths = [x.resolve() for x in folder_path.rglob('*.py') if x.is_file() and '__init__' not in x.name]
|
||||
# possible_package_path = folder_path / '__init__.py'
|
||||
# package = str(possible_package_path) if possible_package_path.exists() else None
|
||||
all_found_modules = list()
|
||||
package_pos = next(idx for idx, x in enumerate(Path(__file__).resolve().parts) if x == 'marl_factory_grid')
|
||||
for module_path in module_paths:
|
||||
module_parts = [x.replace('.py', '') for idx, x in enumerate(module_path.parts) if idx >= package_pos]
|
||||
mod = importlib.import_module('.'.join(module_parts))
|
||||
all_found_modules.extend([x for x in dir(mod) if not(x.startswith('__') or len(x) < 2 or x.isupper())
|
||||
and x not in ['Entity', 'NamedTuple', 'List', 'Rule', 'Union', 'random', 'Floor'
|
||||
'TickResult', 'ActionResult', 'Action', 'Agent', 'deque',
|
||||
'BoundEntityMixin', 'RenderEntity', 'TemplateRule', 'defaultdict',
|
||||
'is_move', 'Objects', 'PositionMixin', 'IsBoundMixin', 'EnvObject',
|
||||
'EnvObjects', 'Dict', 'locate_and_import_class', 'yaml', 'Any',
|
||||
'inspect']])
|
||||
try:
|
||||
model_class = mod.__getattribute__(class_name)
|
||||
return model_class
|
||||
except AttributeError:
|
||||
continue
|
||||
raise AttributeError(f'Class "{class_name}" was not found!!!"\n'
|
||||
f'Check the {folder_path.name} name.\n'
|
||||
f'Possible Options are:\n{set(all_found_modules)}')
|
Reference in New Issue
Block a user