mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-06-18 18:52:52 +02:00
renaming
This commit is contained in:
1
marl_factory_grid/algorithms/__init__.py
Normal file
1
marl_factory_grid/algorithms/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
import os, sys; sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
1
marl_factory_grid/algorithms/marl/__init__.py
Normal file
1
marl_factory_grid/algorithms/marl/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
|
221
marl_factory_grid/algorithms/marl/base_ac.py
Normal file
221
marl_factory_grid/algorithms/marl/base_ac.py
Normal file
@ -0,0 +1,221 @@
|
||||
import torch
|
||||
from typing import Union, List, Dict
|
||||
import numpy as np
|
||||
from torch.distributions import Categorical
|
||||
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
|
||||
from marl_factory_grid.algorithms.utils import add_env_props, instantiate_class
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
from collections import deque
|
||||
|
||||
|
||||
class Names:
|
||||
REWARD = 'reward'
|
||||
DONE = 'done'
|
||||
ACTION = 'action'
|
||||
OBSERVATION = 'observation'
|
||||
LOGITS = 'logits'
|
||||
HIDDEN_ACTOR = 'hidden_actor'
|
||||
HIDDEN_CRITIC = 'hidden_critic'
|
||||
AGENT = 'agent'
|
||||
ENV = 'environment'
|
||||
N_AGENTS = 'n_agents'
|
||||
ALGORITHM = 'algorithm'
|
||||
MAX_STEPS = 'max_steps'
|
||||
N_STEPS = 'n_steps'
|
||||
BUFFER_SIZE = 'buffer_size'
|
||||
CRITIC = 'critic'
|
||||
BATCH_SIZE = 'bnatch_size'
|
||||
N_ACTIONS = 'n_actions'
|
||||
|
||||
nms = Names
|
||||
ListOrTensor = Union[List, torch.Tensor]
|
||||
|
||||
|
||||
class BaseActorCritic:
|
||||
def __init__(self, cfg):
|
||||
add_env_props(cfg)
|
||||
self.__training = True
|
||||
self.cfg = cfg
|
||||
self.n_agents = cfg[nms.ENV][nms.N_AGENTS]
|
||||
self.reset_memory_after_epoch = True
|
||||
self.setup()
|
||||
|
||||
def setup(self):
|
||||
self.net = instantiate_class(self.cfg[nms.AGENT])
|
||||
self.optimizer = torch.optim.RMSprop(self.net.parameters(), lr=3e-4, eps=1e-5)
|
||||
|
||||
@classmethod
|
||||
def _as_torch(cls, x):
|
||||
if isinstance(x, np.ndarray):
|
||||
return torch.from_numpy(x)
|
||||
elif isinstance(x, List):
|
||||
return torch.tensor(x)
|
||||
elif isinstance(x, (int, float)):
|
||||
return torch.tensor([x])
|
||||
return x
|
||||
|
||||
def train(self):
|
||||
self.__training = False
|
||||
networks = [self.net] if not isinstance(self.net, List) else self.net
|
||||
for net in networks:
|
||||
net.train()
|
||||
|
||||
def eval(self):
|
||||
self.__training = False
|
||||
networks = [self.net] if not isinstance(self.net, List) else self.net
|
||||
for net in networks:
|
||||
net.eval()
|
||||
|
||||
def load_state_dict(self, path: Path):
|
||||
pass
|
||||
|
||||
def get_actions(self, out) -> ListOrTensor:
|
||||
actions = [Categorical(logits=logits).sample().item() for logits in out[nms.LOGITS]]
|
||||
return actions
|
||||
|
||||
def init_hidden(self) -> Dict[str, ListOrTensor]:
|
||||
pass
|
||||
|
||||
def forward(self,
|
||||
observations: ListOrTensor,
|
||||
actions: ListOrTensor,
|
||||
hidden_actor: ListOrTensor,
|
||||
hidden_critic: ListOrTensor
|
||||
) -> Dict[str, ListOrTensor]:
|
||||
pass
|
||||
|
||||
@torch.no_grad()
|
||||
def train_loop(self, checkpointer=None):
|
||||
env = instantiate_class(self.cfg[nms.ENV])
|
||||
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
|
||||
tm = MARLActorCriticMemory(self.n_agents, self.cfg[nms.ALGORITHM].get(nms.BUFFER_SIZE, n_steps))
|
||||
global_steps, episode, df_results = 0, 0, []
|
||||
reward_queue = deque(maxlen=2000)
|
||||
|
||||
while global_steps < max_steps:
|
||||
obs = env.reset()
|
||||
last_hiddens = self.init_hidden()
|
||||
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
|
||||
done, rew_log = [False] * self.n_agents, 0
|
||||
|
||||
if self.reset_memory_after_epoch:
|
||||
tm.reset()
|
||||
|
||||
tm.add(observation=obs, action=last_action,
|
||||
logits=torch.zeros(self.n_agents, 1, self.cfg[nms.AGENT][nms.N_ACTIONS]),
|
||||
values=torch.zeros(self.n_agents, 1), reward=reward, done=done, **last_hiddens)
|
||||
|
||||
while not all(done):
|
||||
out = self.forward(obs, last_action, **last_hiddens)
|
||||
action = self.get_actions(out)
|
||||
next_obs, reward, done, info = env.step(action)
|
||||
done = [done] * self.n_agents if isinstance(done, bool) else done
|
||||
|
||||
last_hiddens = dict(hidden_actor =out[nms.HIDDEN_ACTOR],
|
||||
hidden_critic=out[nms.HIDDEN_CRITIC])
|
||||
|
||||
|
||||
tm.add(observation=obs, action=action, reward=reward, done=done,
|
||||
logits=out.get(nms.LOGITS, None), values=out.get(nms.CRITIC, None),
|
||||
**last_hiddens)
|
||||
|
||||
obs = next_obs
|
||||
last_action = action
|
||||
|
||||
if (global_steps+1) % n_steps == 0 or all(done):
|
||||
with torch.inference_mode(False):
|
||||
self.learn(tm)
|
||||
|
||||
global_steps += 1
|
||||
rew_log += sum(reward)
|
||||
reward_queue.extend(reward)
|
||||
|
||||
if checkpointer is not None:
|
||||
checkpointer.step([
|
||||
(f'agent#{i}', agent)
|
||||
for i, agent in enumerate([self.net] if not isinstance(self.net, List) else self.net)
|
||||
])
|
||||
|
||||
if global_steps >= max_steps:
|
||||
break
|
||||
print(f'reward at episode: {episode} = {rew_log}')
|
||||
episode += 1
|
||||
df_results.append([episode, rew_log, *reward])
|
||||
df_results = pd.DataFrame(df_results, columns=['steps', 'reward', *[f'agent#{i}' for i in range(self.n_agents)]])
|
||||
if checkpointer is not None:
|
||||
df_results.to_csv(checkpointer.path / 'results.csv', index=False)
|
||||
return df_results
|
||||
|
||||
@torch.inference_mode(True)
|
||||
def eval_loop(self, n_episodes, render=False):
|
||||
env = instantiate_class(self.cfg[nms.ENV])
|
||||
episode, results = 0, []
|
||||
while episode < n_episodes:
|
||||
obs = env.reset()
|
||||
last_hiddens = self.init_hidden()
|
||||
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
|
||||
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
|
||||
while not all(done):
|
||||
if render: env.render()
|
||||
|
||||
out = self.forward(obs, last_action, **last_hiddens)
|
||||
action = self.get_actions(out)
|
||||
next_obs, reward, done, info = env.step(action)
|
||||
|
||||
if isinstance(done, bool): done = [done] * obs.shape[0]
|
||||
obs = next_obs
|
||||
last_action = action
|
||||
last_hiddens = dict(hidden_actor=out.get(nms.HIDDEN_ACTOR, None),
|
||||
hidden_critic=out.get(nms.HIDDEN_CRITIC, None)
|
||||
)
|
||||
eps_rew += torch.tensor(reward)
|
||||
results.append(eps_rew.tolist() + [sum(eps_rew).item()] + [episode])
|
||||
episode += 1
|
||||
agent_columns = [f'agent#{i}' for i in range(self.cfg['environment']['n_agents'])]
|
||||
results = pd.DataFrame(results, columns=agent_columns + ['sum', 'episode'])
|
||||
results = pd.melt(results, id_vars=['episode'], value_vars=agent_columns + ['sum'], value_name='reward', var_name='agent')
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
def compute_advantages(critic, reward, done, gamma, gae_coef=0.0):
|
||||
tds = (reward + gamma * (1.0 - done) * critic[:, 1:].detach()) - critic[:, :-1]
|
||||
|
||||
if gae_coef <= 0:
|
||||
return tds
|
||||
|
||||
gae = torch.zeros_like(tds[:, -1])
|
||||
gaes = []
|
||||
for t in range(tds.shape[1]-1, -1, -1):
|
||||
gae = tds[:, t] + gamma * gae_coef * (1.0 - done[:, t]) * gae
|
||||
gaes.insert(0, gae)
|
||||
gaes = torch.stack(gaes, dim=1)
|
||||
return gaes
|
||||
|
||||
def actor_critic(self, tm, network, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
|
||||
obs, actions, done, reward = tm.observation, tm.action, tm.done[:, 1:], tm.reward[:, 1:]
|
||||
|
||||
out = network(obs, actions, tm.hidden_actor[:, 0], tm.hidden_critic[:, 0])
|
||||
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
|
||||
critic = out[nms.CRITIC]
|
||||
|
||||
entropy_loss = Categorical(logits=logits).entropy().mean(-1)
|
||||
advantages = self.compute_advantages(critic, reward, done, gamma, gae_coef)
|
||||
value_loss = advantages.pow(2).mean(-1) # n_agent
|
||||
|
||||
# policy loss
|
||||
log_ap = torch.log_softmax(logits, -1)
|
||||
log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze()
|
||||
a2c_loss = -(advantages.detach() * log_ap).mean(-1)
|
||||
# weighted loss
|
||||
loss = a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss
|
||||
return loss.mean()
|
||||
|
||||
def learn(self, tm: MARLActorCriticMemory, **kwargs):
|
||||
loss = self.actor_critic(tm, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
|
||||
# remove next_obs, will be added in next iter
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5)
|
||||
self.optimizer.step()
|
||||
|
24
marl_factory_grid/algorithms/marl/example_config.yaml
Normal file
24
marl_factory_grid/algorithms/marl/example_config.yaml
Normal file
@ -0,0 +1,24 @@
|
||||
agent:
|
||||
classname: algorithms.marl.networks.RecurrentAC
|
||||
n_agents: 2
|
||||
obs_emb_size: 96
|
||||
action_emb_size: 16
|
||||
hidden_size_actor: 64
|
||||
hidden_size_critic: 64
|
||||
use_agent_embedding: False
|
||||
env:
|
||||
classname: environments.factory.make
|
||||
env_name: "DirtyFactory-v0"
|
||||
n_agents: 2
|
||||
max_steps: 250
|
||||
pomdp_r: 2
|
||||
stack_n_frames: 0
|
||||
individual_rewards: True
|
||||
method: algorithms.marl.LoopSEAC
|
||||
algorithm:
|
||||
gamma: 0.99
|
||||
entropy_coef: 0.01
|
||||
vf_coef: 0.5
|
||||
n_steps: 5
|
||||
max_steps: 1000000
|
||||
|
57
marl_factory_grid/algorithms/marl/iac.py
Normal file
57
marl_factory_grid/algorithms/marl/iac.py
Normal file
@ -0,0 +1,57 @@
|
||||
import torch
|
||||
from marl_factory_grid.algorithms.marl.base_ac import BaseActorCritic, nms
|
||||
from marl_factory_grid.algorithms.utils import instantiate_class
|
||||
from pathlib import Path
|
||||
from natsort import natsorted
|
||||
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
|
||||
|
||||
|
||||
class LoopIAC(BaseActorCritic):
|
||||
|
||||
def __init__(self, cfg):
|
||||
super(LoopIAC, self).__init__(cfg)
|
||||
|
||||
def setup(self):
|
||||
self.net = [
|
||||
instantiate_class(self.cfg[nms.AGENT]) for _ in range(self.n_agents)
|
||||
]
|
||||
self.optimizer = [
|
||||
torch.optim.RMSprop(self.net[ag_i].parameters(), lr=3e-4, eps=1e-5) for ag_i in range(self.n_agents)
|
||||
]
|
||||
|
||||
def load_state_dict(self, path: Path):
|
||||
paths = natsorted(list(path.glob('*.pt')))
|
||||
for path, net in zip(paths, self.net):
|
||||
net.load_state_dict(torch.load(path))
|
||||
|
||||
@staticmethod
|
||||
def merge_dicts(ds): # todo could be recursive for more than 1 hierarchy
|
||||
d = {}
|
||||
for k in ds[0].keys():
|
||||
d[k] = [d[k] for d in ds]
|
||||
return d
|
||||
|
||||
def init_hidden(self):
|
||||
ha = [net.init_hidden_actor() for net in self.net]
|
||||
hc = [net.init_hidden_critic() for net in self.net]
|
||||
return dict(hidden_actor=ha, hidden_critic=hc)
|
||||
|
||||
def forward(self, observations, actions, hidden_actor, hidden_critic):
|
||||
outputs = [
|
||||
net(
|
||||
self._as_torch(observations[ag_i]).unsqueeze(0).unsqueeze(0), # agent x time
|
||||
self._as_torch(actions[ag_i]).unsqueeze(0),
|
||||
hidden_actor[ag_i],
|
||||
hidden_critic[ag_i]
|
||||
) for ag_i, net in enumerate(self.net)
|
||||
]
|
||||
return self.merge_dicts(outputs)
|
||||
|
||||
def learn(self, tms: MARLActorCriticMemory, **kwargs):
|
||||
for ag_i in range(self.n_agents):
|
||||
tm, net = tms(ag_i), self.net[ag_i]
|
||||
loss = self.actor_critic(tm, net, **self.cfg[nms.ALGORITHM], **kwargs)
|
||||
self.optimizer[ag_i].zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(net.parameters(), 0.5)
|
||||
self.optimizer[ag_i].step()
|
66
marl_factory_grid/algorithms/marl/mappo.py
Normal file
66
marl_factory_grid/algorithms/marl/mappo.py
Normal file
@ -0,0 +1,66 @@
|
||||
from marl_factory_grid.algorithms.marl.base_ac import Names as nms
|
||||
from marl_factory_grid.algorithms.marl.snac import LoopSNAC
|
||||
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
|
||||
import torch
|
||||
from torch.distributions import Categorical
|
||||
from marl_factory_grid.algorithms.utils import instantiate_class
|
||||
|
||||
|
||||
class LoopMAPPO(LoopSNAC):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(LoopMAPPO, self).__init__(*args, **kwargs)
|
||||
self.reset_memory_after_epoch = False
|
||||
|
||||
def setup(self):
|
||||
self.net = instantiate_class(self.cfg[nms.AGENT])
|
||||
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=3e-4, eps=1e-5)
|
||||
|
||||
def learn(self, tm: MARLActorCriticMemory, **kwargs):
|
||||
if len(tm) >= self.cfg['algorithm']['buffer_size']:
|
||||
# only learn when buffer is full
|
||||
for batch_i in range(self.cfg['algorithm']['n_updates']):
|
||||
batch = tm.chunk_dataloader(chunk_len=self.cfg['algorithm']['n_steps'],
|
||||
k=self.cfg['algorithm']['batch_size'])
|
||||
loss = self.mappo(batch, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5)
|
||||
self.optimizer.step()
|
||||
|
||||
def monte_carlo_returns(self, rewards, done, gamma):
|
||||
rewards_ = []
|
||||
discounted_reward = torch.zeros_like(rewards[:, -1])
|
||||
for t in range(rewards.shape[1]-1, -1, -1):
|
||||
discounted_reward = rewards[:, t] + (gamma * (1.0 - done[:, t]) * discounted_reward)
|
||||
rewards_.insert(0, discounted_reward)
|
||||
rewards_ = torch.stack(rewards_, dim=1)
|
||||
return rewards_
|
||||
|
||||
def mappo(self, batch, network, gamma, entropy_coef, vf_coef, clip_range, **kwargs):
|
||||
out = network(batch[nms.OBSERVATION], batch[nms.ACTION], batch[nms.HIDDEN_ACTOR], batch[nms.HIDDEN_CRITIC])
|
||||
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
|
||||
|
||||
old_log_probs = torch.log_softmax(batch[nms.LOGITS], -1)
|
||||
old_log_probs = torch.gather(old_log_probs, index=batch[nms.ACTION][:, 1:].unsqueeze(-1), dim=-1).squeeze()
|
||||
|
||||
# monte carlo returns
|
||||
mc_returns = self.monte_carlo_returns(batch[nms.REWARD], batch[nms.DONE], gamma)
|
||||
mc_returns = (mc_returns - mc_returns.mean()) / (mc_returns.std() + 1e-8) #todo: norm across agent ok?
|
||||
advantages = mc_returns - out[nms.CRITIC][:, :-1]
|
||||
|
||||
# policy loss
|
||||
log_ap = torch.log_softmax(logits, -1)
|
||||
log_ap = torch.gather(log_ap, dim=-1, index=batch[nms.ACTION][:, 1:].unsqueeze(-1)).squeeze()
|
||||
ratio = (log_ap - old_log_probs).exp()
|
||||
surr1 = ratio * advantages.detach()
|
||||
surr2 = torch.clamp(ratio, 1 - clip_range, 1 + clip_range) * advantages.detach()
|
||||
policy_loss = -torch.min(surr1, surr2).mean(-1)
|
||||
|
||||
# entropy & value loss
|
||||
entropy_loss = Categorical(logits=logits).entropy().mean(-1)
|
||||
value_loss = advantages.pow(2).mean(-1) # n_agent
|
||||
|
||||
# weighted loss
|
||||
loss = policy_loss + vf_coef*value_loss - entropy_coef * entropy_loss
|
||||
|
||||
return loss.mean()
|
221
marl_factory_grid/algorithms/marl/memory.py
Normal file
221
marl_factory_grid/algorithms/marl/memory.py
Normal file
@ -0,0 +1,221 @@
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
import torch
|
||||
from typing import Union
|
||||
from torch import Tensor
|
||||
from torch.utils.data import Dataset, ConcatDataset
|
||||
import random
|
||||
|
||||
|
||||
class ActorCriticMemory(object):
|
||||
def __init__(self, capacity=10):
|
||||
self.capacity = capacity
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.__actions = LazyTensorFiFoQueue(maxlen=self.capacity+1)
|
||||
self.__hidden_actor = LazyTensorFiFoQueue(maxlen=self.capacity+1)
|
||||
self.__hidden_critic = LazyTensorFiFoQueue(maxlen=self.capacity+1)
|
||||
self.__states = LazyTensorFiFoQueue(maxlen=self.capacity+1)
|
||||
self.__rewards = LazyTensorFiFoQueue(maxlen=self.capacity+1)
|
||||
self.__dones = LazyTensorFiFoQueue(maxlen=self.capacity+1)
|
||||
self.__logits = LazyTensorFiFoQueue(maxlen=self.capacity+1)
|
||||
self.__values = LazyTensorFiFoQueue(maxlen=self.capacity+1)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__rewards) - 1
|
||||
|
||||
@property
|
||||
def observation(self, sls=slice(0, None)): # add time dimension through stacking
|
||||
return self.__states[sls].unsqueeze(0) # 1 x time x hidden dim
|
||||
|
||||
@property
|
||||
def hidden_actor(self, sls=slice(0, None)): # 1 x n_layers x dim
|
||||
return self.__hidden_actor[sls].unsqueeze(0) # 1 x time x n_layers x dim
|
||||
|
||||
@property
|
||||
def hidden_critic(self, sls=slice(0, None)): # 1 x n_layers x dim
|
||||
return self.__hidden_critic[sls].unsqueeze(0) # 1 x time x n_layers x dim
|
||||
|
||||
@property
|
||||
def reward(self, sls=slice(0, None)):
|
||||
return self.__rewards[sls].squeeze().unsqueeze(0) # 1 x time
|
||||
|
||||
@property
|
||||
def action(self, sls=slice(0, None)):
|
||||
return self.__actions[sls].long().squeeze().unsqueeze(0) # 1 x time
|
||||
|
||||
@property
|
||||
def done(self, sls=slice(0, None)):
|
||||
return self.__dones[sls].float().squeeze().unsqueeze(0) # 1 x time
|
||||
|
||||
@property
|
||||
def logits(self, sls=slice(0, None)): # assumes a trailing 1 for time dimension - common when using output from NN
|
||||
return self.__logits[sls].squeeze().unsqueeze(0) # 1 x time x actions
|
||||
|
||||
@property
|
||||
def values(self, sls=slice(0, None)):
|
||||
return self.__values[sls].squeeze().unsqueeze(0) # 1 x time x actions
|
||||
|
||||
def add_observation(self, state: Union[Tensor, np.ndarray]):
|
||||
self.__states.append(state if isinstance(state, Tensor) else torch.from_numpy(state))
|
||||
|
||||
def add_hidden_actor(self, hidden: Tensor):
|
||||
# layers x hidden dim
|
||||
self.__hidden_actor.append(hidden)
|
||||
|
||||
def add_hidden_critic(self, hidden: Tensor):
|
||||
# layers x hidden dim
|
||||
self.__hidden_critic.append(hidden)
|
||||
|
||||
def add_action(self, action: Union[int, Tensor]):
|
||||
if not isinstance(action, Tensor):
|
||||
action = torch.tensor(action)
|
||||
self.__actions.append(action)
|
||||
|
||||
def add_reward(self, reward: Union[float, Tensor]):
|
||||
if not isinstance(reward, Tensor):
|
||||
reward = torch.tensor(reward)
|
||||
self.__rewards.append(reward)
|
||||
|
||||
def add_done(self, done: bool):
|
||||
if not isinstance(done, Tensor):
|
||||
done = torch.tensor(done)
|
||||
self.__dones.append(done)
|
||||
|
||||
def add_logits(self, logits: Tensor):
|
||||
self.__logits.append(logits)
|
||||
|
||||
def add_values(self, values: Tensor):
|
||||
self.__values.append(values)
|
||||
|
||||
def add(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
func = getattr(ActorCriticMemory, f'add_{k}')
|
||||
func(self, v)
|
||||
|
||||
|
||||
class MARLActorCriticMemory(object):
|
||||
def __init__(self, n_agents, capacity):
|
||||
self.n_agents = n_agents
|
||||
self.memories = [
|
||||
ActorCriticMemory(capacity) for _ in range(n_agents)
|
||||
]
|
||||
|
||||
def __call__(self, agent_i):
|
||||
return self.memories[agent_i]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.memories[0]) # todo add assertion check!
|
||||
|
||||
def reset(self):
|
||||
for mem in self.memories:
|
||||
mem.reset()
|
||||
|
||||
def add(self, **kwargs):
|
||||
for agent_i in range(self.n_agents):
|
||||
for k, v in kwargs.items():
|
||||
func = getattr(ActorCriticMemory, f'add_{k}')
|
||||
func(self.memories[agent_i], v[agent_i])
|
||||
|
||||
def __getattr__(self, attr):
|
||||
all_attrs = [getattr(mem, attr) for mem in self.memories]
|
||||
return torch.cat(all_attrs, 0) # agent x time ...
|
||||
|
||||
def chunk_dataloader(self, chunk_len, k):
|
||||
datasets = [ExperienceChunks(mem, chunk_len, k) for mem in self.memories]
|
||||
dataset = ConcatDataset(datasets)
|
||||
data = [dataset[i] for i in range(len(dataset))]
|
||||
data = custom_collate_fn(data)
|
||||
return data
|
||||
|
||||
|
||||
def custom_collate_fn(batch):
|
||||
elem = batch[0]
|
||||
return {key: torch.cat([d[key] for d in batch], dim=0) for key in elem}
|
||||
|
||||
|
||||
class ExperienceChunks(Dataset):
|
||||
def __init__(self, memory, chunk_len, k):
|
||||
assert chunk_len <= len(memory), 'chunk_len cannot be longer than the size of the memory'
|
||||
self.memory = memory
|
||||
self.chunk_len = chunk_len
|
||||
self.k = k
|
||||
|
||||
@property
|
||||
def whitelist(self):
|
||||
whitelist = torch.ones(len(self.memory) - self.chunk_len)
|
||||
for d in self.memory.done.squeeze().nonzero().flatten():
|
||||
whitelist[max((0, d-self.chunk_len-1)):d+2] = 0
|
||||
whitelist[0] = 0
|
||||
return whitelist.tolist()
|
||||
|
||||
def sample(self, start=1):
|
||||
cl = self.chunk_len
|
||||
sample = dict(observation=self.memory.observation[:, start:start+cl+1],
|
||||
action=self.memory.action[:, start-1:start+cl],
|
||||
hidden_actor=self.memory.hidden_actor[:, start-1],
|
||||
hidden_critic=self.memory.hidden_critic[:, start-1],
|
||||
reward=self.memory.reward[:, start:start + cl],
|
||||
done=self.memory.done[:, start:start + cl],
|
||||
logits=self.memory.logits[:, start:start + cl],
|
||||
values=self.memory.values[:, start:start + cl])
|
||||
return sample
|
||||
|
||||
def __len__(self):
|
||||
return self.k
|
||||
|
||||
def __getitem__(self, i):
|
||||
idx = random.choices(range(0, len(self.memory) - self.chunk_len), weights=self.whitelist, k=1)
|
||||
return self.sample(idx[0])
|
||||
|
||||
|
||||
class LazyTensorFiFoQueue:
|
||||
def __init__(self, maxlen):
|
||||
self.maxlen = maxlen
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.__lazy_queue = deque(maxlen=self.maxlen)
|
||||
self.shape = None
|
||||
self.queue = None
|
||||
|
||||
def shape_init(self, tensor: Tensor):
|
||||
self.shape = torch.Size([self.maxlen, *tensor.shape])
|
||||
|
||||
def build_tensor_queue(self):
|
||||
if len(self.__lazy_queue) > 0:
|
||||
block = torch.stack(list(self.__lazy_queue), dim=0)
|
||||
l = block.shape[0]
|
||||
if self.queue is None:
|
||||
self.queue = block
|
||||
elif self.true_len() <= self.maxlen:
|
||||
self.queue = torch.cat((self.queue, block), dim=0)
|
||||
else:
|
||||
self.queue = torch.cat((self.queue[l:], block), dim=0)
|
||||
self.__lazy_queue.clear()
|
||||
|
||||
def append(self, data):
|
||||
if self.shape is None:
|
||||
self.shape_init(data)
|
||||
self.__lazy_queue.append(data)
|
||||
if len(self.__lazy_queue) >= self.maxlen:
|
||||
self.build_tensor_queue()
|
||||
|
||||
def true_len(self):
|
||||
return len(self.__lazy_queue) + (0 if self.queue is None else self.queue.shape[0])
|
||||
|
||||
def __len__(self):
|
||||
return min((self.true_len(), self.maxlen))
|
||||
|
||||
def __str__(self):
|
||||
return f'LazyTensorFiFoQueue\tmaxlen: {self.maxlen}, shape: {self.shape}, ' \
|
||||
f'len: {len(self)}, true_len: {self.true_len()}, elements in lazy queue: {len(self.__lazy_queue)}'
|
||||
|
||||
def __getitem__(self, item_or_slice):
|
||||
self.build_tensor_queue()
|
||||
return self.queue[item_or_slice]
|
||||
|
||||
|
||||
|
||||
|
104
marl_factory_grid/algorithms/marl/networks.py
Normal file
104
marl_factory_grid/algorithms/marl/networks.py
Normal file
@ -0,0 +1,104 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils import spectral_norm
|
||||
|
||||
|
||||
class RecurrentAC(nn.Module):
|
||||
def __init__(self, observation_size, n_actions, obs_emb_size,
|
||||
action_emb_size, hidden_size_actor, hidden_size_critic,
|
||||
n_agents, use_agent_embedding=True):
|
||||
super(RecurrentAC, self).__init__()
|
||||
observation_size = np.prod(observation_size)
|
||||
self.n_layers = 1
|
||||
self.n_actions = n_actions
|
||||
self.use_agent_embedding = use_agent_embedding
|
||||
self.hidden_size_actor = hidden_size_actor
|
||||
self.hidden_size_critic = hidden_size_critic
|
||||
self.action_emb_size = action_emb_size
|
||||
self.obs_proj = nn.Linear(observation_size, obs_emb_size)
|
||||
self.action_emb = nn.Embedding(n_actions+1, action_emb_size, padding_idx=0)
|
||||
self.agent_emb = nn.Embedding(n_agents, action_emb_size)
|
||||
mix_in_size = obs_emb_size+action_emb_size if not use_agent_embedding else obs_emb_size+n_agents*action_emb_size
|
||||
self.mix = nn.Sequential(nn.Tanh(),
|
||||
nn.Linear(mix_in_size, obs_emb_size),
|
||||
nn.Tanh(),
|
||||
nn.Linear(obs_emb_size, obs_emb_size)
|
||||
)
|
||||
self.gru_actor = nn.GRU(obs_emb_size, hidden_size_actor, batch_first=True, num_layers=self.n_layers)
|
||||
self.gru_critic = nn.GRU(obs_emb_size, hidden_size_critic, batch_first=True, num_layers=self.n_layers)
|
||||
self.action_head = nn.Sequential(
|
||||
nn.Linear(hidden_size_actor, hidden_size_actor),
|
||||
nn.Tanh(),
|
||||
nn.Linear(hidden_size_actor, n_actions)
|
||||
)
|
||||
# spectral_norm(nn.Linear(hidden_size_actor, hidden_size_actor)),
|
||||
self.critic_head = nn.Sequential(
|
||||
nn.Linear(hidden_size_critic, hidden_size_critic),
|
||||
nn.Tanh(),
|
||||
nn.Linear(hidden_size_critic, 1)
|
||||
)
|
||||
#self.action_head[-1].weight.data.uniform_(-3e-3, 3e-3)
|
||||
#self.action_head[-1].bias.data.uniform_(-3e-3, 3e-3)
|
||||
|
||||
def init_hidden_actor(self):
|
||||
return torch.zeros(1, self.n_layers, self.hidden_size_actor)
|
||||
|
||||
def init_hidden_critic(self):
|
||||
return torch.zeros(1, self.n_layers, self.hidden_size_critic)
|
||||
|
||||
def forward(self, observations, actions, hidden_actor=None, hidden_critic=None):
|
||||
n_agents, t, *_ = observations.shape
|
||||
obs_emb = self.obs_proj(observations.view(n_agents, t, -1).float())
|
||||
action_emb = self.action_emb(actions+1) # shift by one due to padding idx
|
||||
|
||||
if not self.use_agent_embedding:
|
||||
x_t = torch.cat((obs_emb, action_emb), -1)
|
||||
else:
|
||||
agent_emb = self.agent_emb(
|
||||
torch.cat([torch.arange(0, n_agents, 1).view(-1, 1)] * t, 1)
|
||||
)
|
||||
x_t = torch.cat((obs_emb, agent_emb, action_emb), -1)
|
||||
|
||||
mixed_x_t = self.mix(x_t)
|
||||
output_p, _ = self.gru_actor(input=mixed_x_t, hx=hidden_actor.swapaxes(1, 0))
|
||||
output_c, _ = self.gru_critic(input=mixed_x_t, hx=hidden_critic.swapaxes(1, 0))
|
||||
|
||||
logits = self.action_head(output_p)
|
||||
critic = self.critic_head(output_c).squeeze(-1)
|
||||
return dict(logits=logits, critic=critic, hidden_actor=output_p, hidden_critic=output_c)
|
||||
|
||||
|
||||
class RecurrentACL2(RecurrentAC):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.action_head = nn.Sequential(
|
||||
nn.Linear(self.hidden_size_actor, self.hidden_size_actor),
|
||||
nn.Tanh(),
|
||||
NormalizedLinear(self.hidden_size_actor, self.n_actions, trainable_magnitude=True)
|
||||
)
|
||||
|
||||
|
||||
class NormalizedLinear(nn.Linear):
|
||||
def __init__(self, in_features: int, out_features: int,
|
||||
device=None, dtype=None, trainable_magnitude=False):
|
||||
super(NormalizedLinear, self).__init__(in_features, out_features, False, device, dtype)
|
||||
self.d_sqrt = in_features**0.5
|
||||
self.trainable_magnitude = trainable_magnitude
|
||||
self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude)
|
||||
|
||||
def forward(self, input):
|
||||
normalized_input = F.normalize(input, dim=-1, p=2, eps=1e-5)
|
||||
normalized_weight = F.normalize(self.weight, dim=-1, p=2, eps=1e-5)
|
||||
return F.linear(normalized_input, normalized_weight) * self.d_sqrt * self.scale
|
||||
|
||||
|
||||
class L2Norm(nn.Module):
|
||||
def __init__(self, in_features, trainable_magnitude=False):
|
||||
super(L2Norm, self).__init__()
|
||||
self.d_sqrt = in_features**0.5
|
||||
self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude)
|
||||
|
||||
def forward(self, x):
|
||||
return F.normalize(x, dim=-1, p=2, eps=1e-5) * self.d_sqrt * self.scale
|
56
marl_factory_grid/algorithms/marl/seac.py
Normal file
56
marl_factory_grid/algorithms/marl/seac.py
Normal file
@ -0,0 +1,56 @@
|
||||
import torch
|
||||
from torch.distributions import Categorical
|
||||
from marl_factory_grid.algorithms.marl.iac import LoopIAC
|
||||
from marl_factory_grid.algorithms.marl.base_ac import nms
|
||||
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
|
||||
|
||||
|
||||
class LoopSEAC(LoopIAC):
|
||||
def __init__(self, cfg):
|
||||
super(LoopSEAC, self).__init__(cfg)
|
||||
|
||||
def actor_critic(self, tm, networks, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
|
||||
obs, actions, done, reward = tm.observation, tm.action, tm.done[:, 1:], tm.reward[:, 1:]
|
||||
outputs = [net(obs, actions, tm.hidden_actor[:, 0], tm.hidden_critic[:, 0]) for net in networks]
|
||||
|
||||
with torch.inference_mode(True):
|
||||
true_action_logp = torch.stack([
|
||||
torch.log_softmax(out[nms.LOGITS][ag_i, :-1], -1)
|
||||
.gather(index=actions[ag_i, 1:, None], dim=-1)
|
||||
for ag_i, out in enumerate(outputs)
|
||||
], 0).squeeze()
|
||||
|
||||
losses = []
|
||||
|
||||
for ag_i, out in enumerate(outputs):
|
||||
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
|
||||
critic = out[nms.CRITIC]
|
||||
|
||||
entropy_loss = Categorical(logits=logits[ag_i]).entropy().mean()
|
||||
advantages = self.compute_advantages(critic, reward, done, gamma, gae_coef)
|
||||
|
||||
# policy loss
|
||||
log_ap = torch.log_softmax(logits, -1)
|
||||
log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze()
|
||||
|
||||
# importance weights
|
||||
iw = (log_ap - true_action_logp).exp().detach() # importance_weights
|
||||
|
||||
a2c_loss = (-iw*log_ap * advantages.detach()).mean(-1)
|
||||
|
||||
|
||||
value_loss = (iw*advantages.pow(2)).mean(-1) # n_agent
|
||||
|
||||
# weighted loss
|
||||
loss = (a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss).mean()
|
||||
losses.append(loss)
|
||||
|
||||
return losses
|
||||
|
||||
def learn(self, tms: MARLActorCriticMemory, **kwargs):
|
||||
losses = self.actor_critic(tms, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
|
||||
for ag_i, loss in enumerate(losses):
|
||||
self.optimizer[ag_i].zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(self.net[ag_i].parameters(), 0.5)
|
||||
self.optimizer[ag_i].step()
|
33
marl_factory_grid/algorithms/marl/snac.py
Normal file
33
marl_factory_grid/algorithms/marl/snac.py
Normal file
@ -0,0 +1,33 @@
|
||||
from marl_factory_grid.algorithms.marl.base_ac import BaseActorCritic
|
||||
from marl_factory_grid.algorithms.marl.base_ac import nms
|
||||
import torch
|
||||
from torch.distributions import Categorical
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class LoopSNAC(BaseActorCritic):
|
||||
def __init__(self, cfg):
|
||||
super().__init__(cfg)
|
||||
|
||||
def load_state_dict(self, path: Path):
|
||||
path2weights = list(path.glob('*.pt'))
|
||||
assert len(path2weights) == 1, f'Expected a single set of weights but got {len(path2weights)}'
|
||||
self.net.load_state_dict(torch.load(path2weights[0]))
|
||||
|
||||
def init_hidden(self):
|
||||
hidden_actor = self.net.init_hidden_actor()
|
||||
hidden_critic = self.net.init_hidden_critic()
|
||||
return dict(hidden_actor=torch.cat([hidden_actor] * self.n_agents, 0),
|
||||
hidden_critic=torch.cat([hidden_critic] * self.n_agents, 0)
|
||||
)
|
||||
|
||||
def get_actions(self, out):
|
||||
actions = Categorical(logits=out[nms.LOGITS]).sample().squeeze()
|
||||
return actions
|
||||
|
||||
def forward(self, observations, actions, hidden_actor, hidden_critic):
|
||||
out = self.net(self._as_torch(observations).unsqueeze(1),
|
||||
self._as_torch(actions).unsqueeze(1),
|
||||
hidden_actor, hidden_critic
|
||||
)
|
||||
return out
|
130
marl_factory_grid/algorithms/static/TSP_base_agent.py
Normal file
130
marl_factory_grid/algorithms/static/TSP_base_agent.py
Normal file
@ -0,0 +1,130 @@
|
||||
import itertools
|
||||
from random import choice
|
||||
|
||||
import numpy as np
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.approximation import traveling_salesman as tsp
|
||||
|
||||
from marl_factory_grid.modules.doors import constants as do
|
||||
from marl_factory_grid.environment import constants as c
|
||||
from marl_factory_grid.utils.helpers import MOVEMAP
|
||||
|
||||
from abc import abstractmethod, ABC
|
||||
|
||||
future_planning = 7
|
||||
|
||||
|
||||
def points_to_graph(coordiniates_or_tiles, allow_euclidean_connections=True, allow_manhattan_connections=True):
|
||||
"""
|
||||
Given a set of coordinates, this function contructs a non-directed graph, by conncting adjected points.
|
||||
There are three combinations of settings:
|
||||
Allow all neigbors: Distance(a, b) <= sqrt(2)
|
||||
Allow only manhattan: Distance(a, b) == 1
|
||||
Allow only euclidean: Distance(a, b) == sqrt(2)
|
||||
|
||||
|
||||
:param coordiniates_or_tiles: A set of coordinates.
|
||||
:type coordiniates_or_tiles: Tiles
|
||||
:param allow_euclidean_connections: Whether to regard diagonal adjected cells as neighbors
|
||||
:type: bool
|
||||
:param allow_manhattan_connections: Whether to regard directly adjected cells as neighbors
|
||||
:type: bool
|
||||
|
||||
:return: A graph with nodes that are conneceted as specified by the parameters.
|
||||
:rtype: nx.Graph
|
||||
"""
|
||||
assert allow_euclidean_connections or allow_manhattan_connections
|
||||
if hasattr(coordiniates_or_tiles, 'positions'):
|
||||
coordiniates_or_tiles = coordiniates_or_tiles.positions
|
||||
possible_connections = itertools.combinations(coordiniates_or_tiles, 2)
|
||||
graph = nx.Graph()
|
||||
for a, b in possible_connections:
|
||||
diff = np.linalg.norm(np.asarray(a)-np.asarray(b))
|
||||
if allow_manhattan_connections and allow_euclidean_connections and diff <= np.sqrt(2):
|
||||
graph.add_edge(a, b)
|
||||
elif not allow_manhattan_connections and allow_euclidean_connections and diff == np.sqrt(2):
|
||||
graph.add_edge(a, b)
|
||||
elif allow_manhattan_connections and not allow_euclidean_connections and diff == 1:
|
||||
graph.add_edge(a, b)
|
||||
return graph
|
||||
|
||||
|
||||
class TSPBaseAgent(ABC):
|
||||
|
||||
def __init__(self, state, agent_i, static_problem: bool = True):
|
||||
self.static_problem = static_problem
|
||||
self.local_optimization = True
|
||||
self._env = state
|
||||
self.state = self._env.state[c.AGENT][agent_i]
|
||||
self._floortile_graph = points_to_graph(self._env[c.FLOOR].positions)
|
||||
self._static_route = None
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, *_, **__) -> int:
|
||||
return 0
|
||||
|
||||
def _use_door_or_move(self, door, target):
|
||||
if door.is_closed:
|
||||
# Translate the action_object to an integer to have the same output as any other model
|
||||
action = do.ACTION_DOOR_USE
|
||||
else:
|
||||
action = self._predict_move(target)
|
||||
return action
|
||||
|
||||
def calculate_tsp_route(self, target_identifier):
|
||||
positions = [x for x in self._env.state[target_identifier].positions if x != c.VALUE_NO_POS]
|
||||
if self.local_optimization:
|
||||
nodes = \
|
||||
[self.state.pos] + \
|
||||
[x for x in positions if max(abs(np.subtract(x, self.state.pos))) < 3]
|
||||
try:
|
||||
while len(nodes) < 7:
|
||||
nodes += [next(x for x in positions if x not in nodes)]
|
||||
except StopIteration:
|
||||
nodes = [self.state.pos] + positions
|
||||
|
||||
else:
|
||||
nodes = [self.state.pos] + positions
|
||||
route = tsp.traveling_salesman_problem(self._floortile_graph,
|
||||
nodes=nodes, cycle=True, method=tsp.greedy_tsp)
|
||||
return route
|
||||
|
||||
def _door_is_close(self):
|
||||
try:
|
||||
return next(y for x in self.state.tile.neighboring_floor for y in x.guests if do.DOOR in y.name)
|
||||
except StopIteration:
|
||||
return None
|
||||
|
||||
def _has_targets(self, target_identifier):
|
||||
return bool(len([x for x in self._env.state[target_identifier] if x.pos != c.VALUE_NO_POS]) >= 1)
|
||||
|
||||
def _predict_move(self, target_identifier):
|
||||
if self._has_targets(target_identifier):
|
||||
if self.static_problem:
|
||||
if not self._static_route:
|
||||
self._static_route = self.calculate_tsp_route(target_identifier)
|
||||
else:
|
||||
pass
|
||||
next_pos = self._static_route.pop(0)
|
||||
while next_pos == self.state.pos:
|
||||
next_pos = self._static_route.pop(0)
|
||||
else:
|
||||
if not self._static_route:
|
||||
self._static_route = self.calculate_tsp_route(target_identifier)[:7]
|
||||
next_pos = self._static_route.pop(0)
|
||||
while next_pos == self.state.pos:
|
||||
next_pos = self._static_route.pop(0)
|
||||
|
||||
diff = np.subtract(next_pos, self.state.pos)
|
||||
# Retrieve action based on the pos dif (like in: What do I have to do to get there?)
|
||||
try:
|
||||
action = next(action for action, pos_diff in MOVEMAP.items() if np.all(diff == pos_diff))
|
||||
except StopIteration:
|
||||
print(f'diff: {diff}')
|
||||
print('This Should not happen!')
|
||||
action = choice(self.state.actions).name
|
||||
else:
|
||||
action = choice(self.state.actions).name
|
||||
# noinspection PyUnboundLocalVariable
|
||||
return action
|
27
marl_factory_grid/algorithms/static/TSP_dirt_agent.py
Normal file
27
marl_factory_grid/algorithms/static/TSP_dirt_agent.py
Normal file
@ -0,0 +1,27 @@
|
||||
from marl_factory_grid.algorithms.static.TSP_base_agent import TSPBaseAgent
|
||||
|
||||
from marl_factory_grid.modules.clean_up import constants as di
|
||||
|
||||
future_planning = 7
|
||||
|
||||
|
||||
class TSPDirtAgent(TSPBaseAgent):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TSPDirtAgent, self).__init__(*args, **kwargs)
|
||||
|
||||
def predict(self, *_, **__):
|
||||
if self._env.state[di.DIRT].by_pos(self.state.pos) is not None:
|
||||
# Translate the action_object to an integer to have the same output as any other model
|
||||
action = di.CLEAN_UP
|
||||
elif door := self._door_is_close():
|
||||
action = self._use_door_or_move(door, di.DIRT)
|
||||
else:
|
||||
action = self._predict_move(di.DIRT)
|
||||
# Translate the action_object to an integer to have the same output as any other model
|
||||
try:
|
||||
action_obj = next(action_i for action_i, a in enumerate(self.state.actions) if a.name == action)
|
||||
except (StopIteration, UnboundLocalError):
|
||||
print('Will not happen')
|
||||
raise EnvironmentError
|
||||
return action_obj
|
59
marl_factory_grid/algorithms/static/TSP_item_agent.py
Normal file
59
marl_factory_grid/algorithms/static/TSP_item_agent.py
Normal file
@ -0,0 +1,59 @@
|
||||
import numpy as np
|
||||
|
||||
from marl_factory_grid.algorithms.static.TSP_base_agent import TSPBaseAgent
|
||||
|
||||
from marl_factory_grid.modules.items import constants as i
|
||||
|
||||
future_planning = 7
|
||||
inventory_size = 3
|
||||
|
||||
MODE_GET = 'Mode_Get'
|
||||
MODE_BRING = 'Mode_Bring'
|
||||
|
||||
|
||||
class TSPItemAgent(TSPBaseAgent):
|
||||
|
||||
def __init__(self, *args, mode=MODE_GET, **kwargs):
|
||||
super(TSPItemAgent, self).__init__(*args, **kwargs)
|
||||
self.mode = mode
|
||||
|
||||
def predict(self, *_, **__):
|
||||
if self._env.state[i.ITEM].by_pos(self.state.pos) is not None:
|
||||
# Translate the action_object to an integer to have the same output as any other model
|
||||
action = i.ITEM_ACTION
|
||||
elif self._env.state[i.DROP_OFF].by_pos(self.state.pos) is not None:
|
||||
# Translate the action_object to an integer to have the same output as any other model
|
||||
action = i.ITEM_ACTION
|
||||
elif door := self._door_is_close():
|
||||
action = self._use_door_or_move(door, i.DROP_OFF if self.mode == MODE_BRING else i.ITEM)
|
||||
else:
|
||||
action = self._choose()
|
||||
# Translate the action_object to an integer to have the same output as any other model
|
||||
try:
|
||||
action_obj = next(action_i for action_i, a in enumerate(self.state.actions) if a.name == action)
|
||||
except (StopIteration, UnboundLocalError):
|
||||
print('Will not happen')
|
||||
raise EnvironmentError
|
||||
# noinspection PyUnboundLocalVariable
|
||||
if self.mode == MODE_BRING and len(self._env[i.INVENTORY].by_entity(self.state)):
|
||||
pass
|
||||
elif self.mode == MODE_BRING and not len(self._env[i.INVENTORY].by_entity(self.state)):
|
||||
self.mode = MODE_GET
|
||||
elif self.mode == MODE_GET and len(self._env[i.INVENTORY].by_entity(self.state)) > inventory_size:
|
||||
self.mode = MODE_BRING
|
||||
else:
|
||||
pass
|
||||
return action_obj
|
||||
|
||||
def _choose(self):
|
||||
target = i.DROP_OFF if self.mode == MODE_BRING else i.ITEM
|
||||
if len(self._env.state[i.ITEM]) >= 1:
|
||||
action = self._predict_move(target)
|
||||
|
||||
elif len(self._env[i.INVENTORY].by_entity(self.state)):
|
||||
self.mode = MODE_BRING
|
||||
action = self._predict_move(target)
|
||||
else:
|
||||
action = int(np.random.randint(self._env.action_space.n))
|
||||
# noinspection PyUnboundLocalVariable
|
||||
return action
|
32
marl_factory_grid/algorithms/static/TSP_target_agent.py
Normal file
32
marl_factory_grid/algorithms/static/TSP_target_agent.py
Normal file
@ -0,0 +1,32 @@
|
||||
from marl_factory_grid.algorithms.static.TSP_base_agent import TSPBaseAgent
|
||||
|
||||
from marl_factory_grid.modules.destinations import constants as d
|
||||
from marl_factory_grid.modules.doors import constants as do
|
||||
|
||||
future_planning = 7
|
||||
|
||||
|
||||
class TSPTargetAgent(TSPBaseAgent):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TSPTargetAgent, self).__init__(*args, **kwargs)
|
||||
|
||||
def _handle_doors(self):
|
||||
|
||||
try:
|
||||
return next(y for x in self.state.tile.neighboring_floor for y in x.guests if do.DOOR in y.name)
|
||||
except StopIteration:
|
||||
return None
|
||||
|
||||
def predict(self, *_, **__):
|
||||
if door := self._door_is_close():
|
||||
action = self._use_door_or_move(door, d.DESTINATION)
|
||||
else:
|
||||
action = self._predict_move(d.DESTINATION)
|
||||
# Translate the action_object to an integer to have the same output as any other model
|
||||
try:
|
||||
action_obj = next(action_i for action_i, a in enumerate(self.state.actions) if a.name == action)
|
||||
except (StopIteration, UnboundLocalError):
|
||||
print('Will not happen')
|
||||
return action_obj
|
||||
|
0
marl_factory_grid/algorithms/static/__init__.py
Normal file
0
marl_factory_grid/algorithms/static/__init__.py
Normal file
15
marl_factory_grid/algorithms/static/random_agent.py
Normal file
15
marl_factory_grid/algorithms/static/random_agent.py
Normal file
@ -0,0 +1,15 @@
|
||||
from random import randint
|
||||
|
||||
from marl_factory_grid.algorithms.static.TSP_base_agent import TSPBaseAgent
|
||||
|
||||
future_planning = 7
|
||||
|
||||
|
||||
class TSPRandomAgent(TSPBaseAgent):
|
||||
|
||||
def __init__(self, n_actions, *args, **kwargs):
|
||||
super(TSPRandomAgent, self).__init__(*args, **kwargs)
|
||||
self.n_action = n_actions
|
||||
|
||||
def predict(self, *_, **__):
|
||||
return randint(0, self.n_action - 1)
|
85
marl_factory_grid/algorithms/utils.py
Normal file
85
marl_factory_grid/algorithms/utils.py
Normal file
@ -0,0 +1,85 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
import yaml
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def load_class(classname):
|
||||
from importlib import import_module
|
||||
module_path, class_name = classname.rsplit(".", 1)
|
||||
module = import_module(module_path)
|
||||
c = getattr(module, class_name)
|
||||
return c
|
||||
|
||||
|
||||
def instantiate_class(arguments):
|
||||
from importlib import import_module
|
||||
|
||||
d = dict(arguments)
|
||||
classname = d["classname"]
|
||||
del d["classname"]
|
||||
module_path, class_name = classname.rsplit(".", 1)
|
||||
module = import_module(module_path)
|
||||
c = getattr(module, class_name)
|
||||
return c(**d)
|
||||
|
||||
|
||||
def get_class(arguments):
|
||||
from importlib import import_module
|
||||
|
||||
if isinstance(arguments, dict):
|
||||
classname = arguments["classname"]
|
||||
module_path, class_name = classname.rsplit(".", 1)
|
||||
module = import_module(module_path)
|
||||
c = getattr(module, class_name)
|
||||
return c
|
||||
else:
|
||||
classname = arguments.classname
|
||||
module_path, class_name = classname.rsplit(".", 1)
|
||||
module = import_module(module_path)
|
||||
c = getattr(module, class_name)
|
||||
return c
|
||||
|
||||
|
||||
def get_arguments(arguments):
|
||||
from importlib import import_module
|
||||
d = dict(arguments)
|
||||
if "classname" in d:
|
||||
del d["classname"]
|
||||
return d
|
||||
|
||||
|
||||
def load_yaml_file(path: Path):
|
||||
with path.open() as stream:
|
||||
cfg = yaml.load(stream, Loader=yaml.FullLoader)
|
||||
return cfg
|
||||
|
||||
|
||||
def add_env_props(cfg):
|
||||
env = instantiate_class(cfg['environment'].copy())
|
||||
cfg['agent'].update(dict(observation_size=list(env.observation_space.shape),
|
||||
n_actions=env.action_space.n))
|
||||
|
||||
|
||||
class Checkpointer(object):
|
||||
def __init__(self, experiment_name, root, config, total_steps, n_checkpoints):
|
||||
self.path = root / experiment_name
|
||||
self.checkpoint_indices = list(np.linspace(1, total_steps, n_checkpoints, dtype=int) - 1)
|
||||
self.__current_checkpoint = 0
|
||||
self.__current_step = 0
|
||||
self.path.mkdir(exist_ok=True, parents=True)
|
||||
with (self.path / 'config.yaml').open('w') as outfile:
|
||||
yaml.dump(config, outfile, default_flow_style=False)
|
||||
|
||||
def save_experiment(self, name: str, model):
|
||||
cpt_path = self.path / f'checkpoint_{self.__current_checkpoint}'
|
||||
cpt_path.mkdir(exist_ok=True, parents=True)
|
||||
torch.save(model.state_dict(), cpt_path / f'{name}.pt')
|
||||
|
||||
def step(self, to_save):
|
||||
if self.__current_step in self.checkpoint_indices:
|
||||
print(f'Checkpointing #{self.__current_checkpoint}')
|
||||
for name, model in to_save:
|
||||
self.save_experiment(name, model)
|
||||
self.__current_checkpoint += 1
|
||||
self.__current_step += 1
|
Reference in New Issue
Block a user