major redesign ob observations and entittes

This commit is contained in:
Steffen Illium
2023-06-09 14:04:17 +02:00
parent 901fbcbc32
commit c552c35f66
161 changed files with 4458 additions and 4163 deletions

0
environment/__init__.py Normal file
View File

101
environment/actions.py Normal file
View File

@@ -0,0 +1,101 @@
import abc
from typing import Union
from environment import rewards as r
from environment import constants as c
from environment.utils.helpers import MOVEMAP
from environment.utils.results import ActionResult
class Action(abc.ABC):
@property
def name(self):
return self._identifier
@abc.abstractmethod
def __init__(self, identifier: str):
self._identifier = identifier
@abc.abstractmethod
def do(self, entity, state) -> Union[None, ActionResult]:
return
def __repr__(self):
return f'Action[{self._identifier}]'
class Noop(Action):
def __init__(self):
super().__init__(c.NOOP)
def do(self, entity, *_) -> Union[None, ActionResult]:
return ActionResult(identifier=self._identifier, validity=c.VALID,
reward=r.NOOP, entity=entity)
class Move(Action, abc.ABC):
@abc.abstractmethod
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def do(self, entity, env):
new_pos = self._calc_new_pos(entity.pos)
if next_tile := env[c.FLOOR].by_pos(new_pos):
# noinspection PyUnresolvedReferences
valid = entity.move(next_tile)
else:
valid = c.NOT_VALID
reward = r.MOVEMENTS_VALID if valid else r.MOVEMENTS_FAIL
return ActionResult(entity=entity, identifier=self._identifier, validity=valid, reward=reward)
def _calc_new_pos(self, pos):
x_diff, y_diff = MOVEMAP[self._identifier]
return pos[0] + x_diff, pos[1] + y_diff
class North(Move):
def __init__(self, *args, **kwargs):
super().__init__(c.NORTH, *args, **kwargs)
class NorthEast(Move):
def __init__(self, *args, **kwargs):
super().__init__(c.NORTHEAST, *args, **kwargs)
class East(Move):
def __init__(self, *args, **kwargs):
super().__init__(c.EAST, *args, **kwargs)
class SouthEast(Move):
def __init__(self, *args, **kwargs):
super().__init__(c.SOUTHEAST, *args, **kwargs)
class South(Move):
def __init__(self, *args, **kwargs):
super().__init__(c.SOUTH, *args, **kwargs)
class SouthWest(Move):
def __init__(self, *args, **kwargs):
super().__init__(c.SOUTHWEST, *args, **kwargs)
class West(Move):
def __init__(self, *args, **kwargs):
super().__init__(c.WEST, *args, **kwargs)
class NorthWest(Move):
def __init__(self, *args, **kwargs):
super().__init__(c.NORTHWEST, *args, **kwargs)
Move4 = [North, East, South, West]
# noinspection PyTypeChecker
Move8 = Move4 + [NorthEast, SouthEast, SouthWest, NorthWest]

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 KiB

BIN
environment/assets/wall.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 KiB

60
environment/constants.py Normal file
View File

@@ -0,0 +1,60 @@
# Names
DANGER_ZONE = 'x' # Dange Zone tile _identifier for resolving the string based map files.
DEFAULTS = 'Defaults'
SELF = 'Self'
PLACEHOLDER = 'Placeholder'
FLOOR = 'Floor' # Identifier of Floor-objects and groups (groups).
FLOORS = 'Floors' # Identifier of Floor-objects and groups (groups).
WALL = 'Wall' # Identifier of Wall-objects and groups (groups).
WALLS = 'Walls' # Identifier of Wall-objects and groups (groups).
LEVEL = 'Level' # Identifier of Level-objects and groups (groups).
AGENT = 'Agent' # Identifier of Agent-objects and groups (groups).
AGENTS = 'Agents' # Identifier of Agent-objects and groups (groups).
OTHERS = 'Other'
COMBINED = 'Combined'
GLOBAL_POSITION = 'GLOBAL_POSITION' # Identifier of the global position slice
# Attributes
IS_BLOCKING_LIGHT = 'is_blocking_light'
HAS_POSITION = 'has_position'
HAS_NO_POSITION = 'has_no_position'
ALL = 'All'
# Symbols (Read from map-files)
SYMBOL_WALL = '#'
SYMBOL_FLOOR = '-'
VALID = True # Identifier to rename boolean values in the context of actions.
NOT_VALID = False # Identifier to rename boolean values in the context of actions.
VALUE_FREE_CELL = 0 # Free-Cell value used in observation
VALUE_OCCUPIED_CELL = 1 # Occupied-Cell value used in observation
VALUE_NO_POS = (-9999, -9999) # Invalid Position value used in the environment (smth. is off-grid)
ACTION = 'action' # Identifier of Action-objects and groups (groups).
COLLISION = 'Collision' # Identifier to use in the context of collitions.
LAST_POS = 'LAST_POS' # Identifiert for retrieving an enitites last pos.
VALIDITY = 'VALIDITY' # Identifiert for retrieving the Validity of Action, Tick, etc. ...
# Actions
# Movements
NORTH = 'north'
EAST = 'east'
SOUTH = 'south'
WEST = 'west'
NORTHEAST = 'north_east'
SOUTHEAST = 'south_east'
SOUTHWEST = 'south_west'
NORTHWEST = 'north_west'
# Move Groups
MOVE8 = 'Move8'
MOVE4 = 'Move4'
# No-Action / Wait
NOOP = 'Noop'
# Result Identifier
MOVEMENTS_VALID = 'motion_valid'
MOVEMENTS_FAIL = 'motion_not_valid'

View File

View File

@@ -0,0 +1,76 @@
from typing import List, Union
from environment import constants as c
from environment.actions import Action
from environment.entity.entity import Entity
from environment.utils.render import RenderEntity
from environment.utils import renderer
from environment.utils.helpers import is_move
from environment.utils.results import ActionResult, Result
class Agent(Entity):
@property
def obs_tag(self):
return self.name
@property
def actions(self):
return self._actions
@property
def observations(self):
return self._observations
@property
def can_collide(self):
return True
def step_result(self):
pass
@property
def collection(self):
return self._collection
@property
def state(self):
return self._state or ActionResult(entity=self, identifier=c.NOOP, validity=c.VALID, reward=0)
def __init__(self, actions: List[Action], observations: List[str], *args, **kwargs):
super(Agent, self).__init__(*args, **kwargs)
self.step_result = dict()
self._actions = actions
self._observations = observations
self._state: Union[Result, None] = None
# noinspection PyAttributeOutsideInit
def clear_temp_state(self):
self._state = None
return self
def summarize_state(self):
state_dict = super().summarize_state()
state_dict.update(valid=bool(self.state.validity), action=str(self.state.identifier))
return state_dict
def set_state(self, action_result):
self._state = action_result
def render(self):
i = next(idx for idx, x in enumerate(self._collection) if x.name == self.name)
curr_state = self.state
if curr_state.identifier == c.COLLISION:
render_state = renderer.STATE_COLLISION
elif curr_state.validity:
if curr_state.identifier == c.NOOP:
render_state = renderer.STATE_IDLE
elif is_move(curr_state.identifier):
render_state = renderer.STATE_MOVE
else:
render_state = renderer.STATE_VALID
else:
render_state = renderer.STATE_INVALID
return RenderEntity(c.AGENT, self.pos, 1, 'none', render_state, i + 1, real_name=self.name)

View File

@@ -0,0 +1,79 @@
import abc
from environment import constants as c
from environment.entity.object import EnvObject
from environment.utils.render import RenderEntity
class Entity(EnvObject, abc.ABC):
"""Full Env Entity that lives on the env Grid. Doors, Items, DirtPile etc..."""
@property
def has_position(self):
return self.pos != c.VALUE_NO_POS
@property
def x(self):
return self.pos[0]
@property
def y(self):
return self.pos[1]
@property
def pos(self):
return self._tile.pos
@property
def tile(self):
return self._tile
@property
def last_tile(self):
try:
return self._last_tile
except AttributeError:
# noinspection PyAttributeOutsideInit
self._last_tile = None
return self._last_tile
@property
def last_pos(self):
try:
return self.last_tile.pos
except AttributeError:
return c.VALUE_NO_POS
@property
def direction_of_view(self):
last_x, last_y = self.last_pos
curr_x, curr_y = self.pos
return last_x - curr_x, last_y - curr_y
def move(self, next_tile):
curr_tile = self.tile
if not_same_tile := curr_tile != next_tile:
if valid := next_tile.enter(self):
curr_tile.leave(self)
self._tile = next_tile
self._last_tile = curr_tile
for observer in self.observers:
observer.notify_change_pos(self)
return valid
return not_same_tile
def __init__(self, tile, **kwargs):
super().__init__(**kwargs)
self._tile = tile
tile.enter(self)
def summarize_state(self) -> dict:
return dict(name=str(self.name), x=int(self.x), y=int(self.y),
tile=str(self.tile.name), can_collide=bool(self.can_collide))
@abc.abstractmethod
def render(self):
return RenderEntity(self.__class__.__name__.lower(), self.pos)
def __repr__(self):
return super(Entity, self).__repr__() + f'(@{self.pos})'

View File

@@ -0,0 +1,18 @@
# noinspection PyAttributeOutsideInit
class BoundEntityMixin:
@property
def bound_entity(self):
return self._bound_entity
@property
def name(self):
return f'{self.__class__.__name__}({self._bound_entity.name})'
def belongs_to_entity(self, entity):
return entity == self.bound_entity
def bind_to(self, entity):
self._bound_entity = entity

View File

@@ -0,0 +1,127 @@
from abc import ABC, abstractmethod
from collections import defaultdict
from typing import Union
from environment import constants as c
class Object:
"""Generell Objects for Organisation and Maintanance such as Actions etc..."""
_u_idx = defaultdict(lambda: 0)
def __bool__(self):
return True
@property
def observers(self):
return self._observers
@property
def name(self):
if self._str_ident is not None:
return f'{self.__class__.__name__}[{self._str_ident}]'
return f'{self.__class__.__name__}#{self.identifier_int}'
@property
def identifier(self):
if self._str_ident is not None:
return self._str_ident
else:
return self.name
def __init__(self, str_ident: Union[str, None] = None, **kwargs):
self._observers = []
self._str_ident = str_ident
self.identifier_int = self._identify_and_count_up()
self._collection = None
if kwargs:
print(f'Following kwargs were passed, but ignored: {kwargs}')
def __repr__(self):
return f'{self.name}'
def __eq__(self, other) -> bool:
return other == self.identifier
def __hash__(self):
return hash(self.identifier)
def _identify_and_count_up(self):
idx = Object._u_idx[self.__class__.__name__]
Object._u_idx[self.__class__.__name__] += 1
return idx
def set_collection(self, collection):
self._collection = collection
def add_observer(self, observer):
self.observers.append(observer)
observer.notify_change_pos(self)
def del_observer(self, observer):
self.observers.remove(observer)
class EnvObject(Object):
"""Objects that hold Information that are observable, but have no position on the env grid. Inventories etc..."""
_u_idx = defaultdict(lambda: 0)
@property
def obs_tag(self):
try:
return self._collection.name or self.name
except AttributeError:
return self.name
@property
def is_blocking_light(self):
try:
return self._collection.is_blocking_light or False
except AttributeError:
return False
@property
def can_move(self):
try:
return self._collection.can_move or False
except AttributeError:
return False
@property
def is_blocking_pos(self):
try:
return self._collection.is_blocking_pos or False
except AttributeError:
return False
@property
def has_position(self):
try:
return self._collection.has_position or False
except AttributeError:
return False
@property
def can_collide(self):
try:
return self._collection.can_collide or False
except AttributeError:
return False
@property
def encoding(self):
return c.VALUE_OCCUPIED_CELL
def __init__(self, **kwargs):
super(EnvObject, self).__init__(**kwargs)
def change_parent_collection(self, other_collection):
other_collection.add_item(self)
self._collection.delete_env_object(self)
self._collection = other_collection
return self._collection == other_collection

View File

@@ -0,0 +1,45 @@
import math
import numpy as np
from environment.entity.mixin import BoundEntityMixin
from environment.entity.object import Object, EnvObject
##########################################################################
# ####################### Objects and Entitys ########################## #
##########################################################################
class PlaceHolder(Object):
def __init__(self, *args, fill_value=0, **kwargs):
super().__init__(*args, **kwargs)
self._fill_value = fill_value
@property
def can_collide(self):
return False
@property
def encoding(self):
return self._fill_value
@property
def name(self):
return "PlaceHolder"
class GlobalPosition(BoundEntityMixin, EnvObject):
@property
def encoding(self):
if self._normalized:
return tuple(np.divide(self._bound_entity.pos, self._level_shape))
else:
return self.bound_entity.pos
def __init__(self, *args, normalized: bool = True, **kwargs):
super(GlobalPosition, self).__init__(*args, **kwargs)
self._level_shape = math.sqrt(self.size)
self._normalized = normalized

View File

@@ -0,0 +1,131 @@
from typing import List
import numpy as np
from environment import constants as c
from environment.entity.object import EnvObject
from environment.utils.render import RenderEntity
from environment.utils import helpers as h
class Floor(EnvObject):
@property
def has_position(self):
return True
@property
def can_collide(self):
return False
@property
def can_move(self):
return False
@property
def is_blocking_pos(self):
return False
@property
def is_blocking_light(self):
return False
@property
def neighboring_floor_pos(self):
return [x.pos for x in self.neighboring_floor]
@property
def neighboring_floor(self):
if self._neighboring_floor:
pass
else:
self._neighboring_floor = [x for x in [self._collection.by_pos(np.add(self.pos, pos))
for pos in h.POS_MASK.reshape(-1, 2)
if not np.all(pos == [0, 0])]
if x]
return self._neighboring_floor
@property
def encoding(self):
return c.VALUE_OCCUPIED_CELL
@property
def guests_that_can_collide(self):
return [x for x in self.guests if x.can_collide]
@property
def guests(self):
return self._guests.values()
@property
def x(self):
return self.pos[0]
@property
def y(self):
return self.pos[1]
@property
def is_blocked(self):
return any([x.is_blocking_pos for x in self.guests])
def __init__(self, pos, **kwargs):
super(Floor, self).__init__(**kwargs)
self._guests = dict()
self.pos = tuple(pos)
self._neighboring_floor: List[Floor] = list()
self._blocked_by = None
def __len__(self):
return len(self._guests)
def is_empty(self):
return not len(self._guests)
def is_occupied(self):
return bool(len(self._guests))
def enter(self, guest):
if (guest.name not in self._guests and not self.is_blocked) and not (guest.is_blocking_pos and self.is_occupied()):
self._guests.update({guest.name: guest})
return c.VALID
else:
return c.NOT_VALID
def leave(self, guest):
try:
del self._guests[guest.name]
except (ValueError, KeyError):
return c.NOT_VALID
return c.VALID
def __repr__(self):
return f'{self.name}(@{self.pos})'
def summarize_state(self, **_):
return dict(name=self.name, x=int(self.x), y=int(self.y))
def render(self):
return None
class Wall(Floor):
@property
def can_collide(self):
return True
@property
def encoding(self):
return c.VALUE_OCCUPIED_CELL
def render(self):
return RenderEntity(c.WALL, self.pos)
@property
def is_blocking_pos(self):
return True
@property
def is_blocking_light(self):
return True

201
environment/factory.py Normal file
View File

@@ -0,0 +1,201 @@
import shutil
from collections import defaultdict
from itertools import chain
from os import PathLike
from pathlib import Path
from typing import Union
import gymnasium as gym
from environment.utils.level_parser import LevelParser
from environment.utils.observation_builder import OBSBuilder
from environment.utils.config_parser import FactoryConfigParser
from environment.utils import helpers as h
import environment.constants as c
from environment.utils.states import Gamestate
REC_TAC = 'rec_'
class BaseFactory(gym.Env):
@property
def action_space(self):
return self.state[c.AGENT].action_space
@property
def named_action_space(self):
return self.state[c.AGENT].named_action_space
@property
def observation_space(self):
return self.obs_builder.observation_space(self.state)
@property
def named_observation_space(self):
return self.obs_builder.named_observation_space(self.state)
@property
def params(self) -> dict:
import yaml
config_path = Path(self._config_file)
config_dict = yaml.safe_load(config_path.open())
return config_dict
@property
def summarize_header(self):
summary_dict = self._summarize_state(stateless_entities=True)
return summary_dict
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def __init__(self, config_file: Union[str, PathLike]):
self._config_file = config_file
self.conf = FactoryConfigParser(self._config_file)
# Attribute Assignment
self.level_filepath = Path(__file__).parent.parent / h.LEVELS_DIR / f'{self.conf.level_name}.txt'
self._renderer = None # expensive - don't use it when not required !
parsed_entities = self.conf.load_entities()
self.map = LevelParser(self.level_filepath, parsed_entities, self.conf.pomdp_r)
# Init for later usage:
self.state: Gamestate
self.map: LevelParser
self.obs_builder: OBSBuilder
# TODO: Reset ---> document this
self.reset()
def __getitem__(self, item):
return self.state.entities[item]
def reset(self) -> (dict, dict):
self.state = None
# Init entity:
entities = self.map.do_init()
# Grab all rules:
rules = self.conf.load_rules()
# Agents
# noinspection PyAttributeOutsideInit
self.state = Gamestate(entities, rules, self.conf.env_seed)
agents = self.conf.load_agents(self.map.size, self[c.FLOOR].empty_tiles)
self.state.entities.add_item({c.AGENT: agents})
# All is set up, trigger additional init (after agent entity spawn etc)
self.state.rules.do_all_init(self.state)
# Observations
# noinspection PyAttributeOutsideInit
self.obs_builder = OBSBuilder(self.map.level_shape, self.state, self.map.pomdp_r)
return self.obs_builder.refresh_and_build_for_all(self.state)
def step(self, actions):
if not isinstance(actions, list):
actions = [int(actions)]
# Apply rules, do actions, tick the state, etc...
tick_result = self.state.tick(actions)
# Check Done Conditions
done_results = self.state.check_done()
# Finalize
reward, reward_info, done = self.summarize_step_results(tick_result, done_results)
info = reward_info
info.update(step_reward=sum(reward), step=self.state.curr_step)
# TODO:
# if self._record_episodes:
# info.update(self._summarize_state())
obs, reset_info = self.obs_builder.refresh_and_build_for_all(self.state)
info.update(reset_info)
return None, [x for x in obs.values()], reward, done, info
def summarize_step_results(self, tick_results: list, done_check_results: list) -> (int, dict, bool):
# Returns: Reward, Info
rewards = defaultdict(lambda: 0.0)
# Gather per agent env rewards and
# Combine Info dicts into a global one
combined_info_dict = defaultdict(lambda: 0.0)
for result in chain(tick_results, done_check_results):
if result.reward is not None:
try:
rewards[result.entity.name] += result.reward
except AttributeError:
rewards['global'] += result.reward
infos = result.get_infos()
for info in infos:
assert isinstance(info.value, (float, int))
combined_info_dict[info.identifier] += info.value
# Check Done Rule Results
try:
done_reason = next(x for x in done_check_results if x.validity)
done = True
self.state.print(f'Env done, Reason: {done_reason.name}.')
except StopIteration:
done = False
if self.conf.individual_rewards:
global_rewards = rewards['global']
del rewards['global']
reward = [rewards[agent.name] for agent in self.state[c.AGENT]]
reward = [x + global_rewards for x in reward]
self.state.print(f"rewards are {rewards}")
return reward, combined_info_dict, done
else:
reward = sum(rewards.values())
self.state.print(f"reward is {reward}")
return reward, combined_info_dict, done
def start_recording(self):
self.conf.do_record = True
return self.conf.do_record
def stop_recording(self):
self.conf.do_record = False
return not self.conf.do_record
# noinspection PyGlobalUndefined
def render(self, mode='human'):
if not self._renderer: # lazy init
from environment.utils.renderer import Renderer
global Renderer
self._renderer = Renderer(self.map.level_shape, view_radius=self.conf.pomdp_r, fps=20)
render_entities = self.state.entities.render()
if self.conf.pomdp_r:
for render_entity in render_entities:
if render_entity.name == c.AGENT:
render_entity.aux = self.obs_builder.curr_lightmaps[render_entity.real_name]
return self._renderer.render(render_entities)
def _summarize_state(self, stateless_entities=False):
summary = {f'{REC_TAC}step': self.state.curr_step}
for entity_group in self.state:
if entity_group.is_stateless == stateless_entities:
summary.update({f'{REC_TAC}{entity_group.name}': entity_group.summarize_states()})
return summary
def print(self, string):
if self.conf.verbose:
print(string)
def save_params(self, filepath: Path):
# noinspection PyProtectedMember
filepath = Path(filepath)
filepath.parent.mkdir(parents=True, exist_ok=True)
shutil.copyfile(self._config_file, filepath)

View File

View File

@@ -0,0 +1,30 @@
from environment.groups.env_objects import EnvObjects
from environment.groups.mixins import PositionMixin
from environment.entity.agent import Agent
import environment.constants as c
class Agents(PositionMixin, EnvObjects):
_entity = Agent
is_blocking_light = False
can_move = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@property
def obs_pairs(self):
return [(a.name, a) for a in self]
@property
def action_space(self):
from gymnasium import spaces
space = spaces.Tuple([spaces.Discrete(len(x.actions)) for x in self])
return space
@property
def named_action_space(self):
named_space = dict()
for agent in self:
named_space[agent.name] = {action.name: idx for idx, action in enumerate(agent.actions)}
return named_space

View File

@@ -0,0 +1,33 @@
from environment.groups.objects import Objects
from environment.entity.object import EnvObject
class EnvObjects(Objects):
_entity = EnvObject
is_blocking_light: bool = False
can_collide: bool = False
has_position: bool = False
can_move: bool = False
@property
def encodings(self):
return [x.encoding for x in self]
def __init__(self, size, *args, **kwargs):
super(EnvObjects, self).__init__(*args, **kwargs)
self.size = size
def add_item(self, item: EnvObject):
assert self.has_position or (len(self) <= self.size)
super(EnvObjects, self).add_item(item)
return self
def summarize_states(self):
return [entity.summarize_state() for entity in self.values()]
def delete_env_object(self, env_object: EnvObject):
del self[env_object.name]
def delete_env_object_by_name(self, name):
del self[name]

View File

@@ -0,0 +1,64 @@
from collections import defaultdict
from operator import itemgetter
from typing import Dict
from environment.groups.objects import Objects
from environment.entity.entity import Entity
from environment.utils.helpers import POS_MASK
class Entities(Objects):
_entity = Objects
@staticmethod
def neighboring_positions(pos):
return (POS_MASK + pos).reshape(-1, 2)
def get_near_pos(self, pos):
return [y for x in itemgetter(*(tuple(x) for x in self.neighboring_positions(pos)))(self.pos_dict) for y in x]
def render(self):
return [y for x in self for y in x.render() if x is not None]
@property
def names(self):
return list(self._data.keys())
def __init__(self):
self.pos_dict = defaultdict(list)
super().__init__()
def iter_entities(self):
return iter((x for sublist in self.values() for x in sublist))
def add_items(self, items: Dict):
return self.add_item(items)
def add_item(self, item: dict):
assert_str = 'This group of entity has already been added!'
assert not any([key for key in item.keys() if key in self.keys()]), assert_str
self._data.update(item)
for val in item.values():
val.add_observer(self)
return self
def __delitem__(self, name):
assert_str = 'This group of entity does not exist in this collection!'
assert any([key for key in name.keys() if key in self.keys()]), assert_str
self[name]._observers.delete(self)
for entity in self[name]:
entity.del_observer(self)
return super(Entities, self).__delitem__(name)
@property
def obs_pairs(self):
return [y for x in self for y in x.obs_pairs]
def by_pos(self, pos: (int, int)):
return self.pos_dict[pos]
# found_entities = [y for y in (x.by_pos(pos) for x in self.values() if hasattr(x, 'by_pos')) if y is not None]
# return found_entities
@property
def positions(self):
return [k for k, v in self.pos_dict.items() for _ in v]

View File

@@ -0,0 +1,102 @@
from abc import ABC
from typing import Tuple
import numpy as np
from environment import constants as c
from environment.entity.entity import Entity
# noinspection PyUnresolvedReferences,PyTypeChecker,PyArgumentList
class PositionMixin:
_entity = Entity
is_blocking_light: bool = True
can_collide: bool = True
has_position: bool = True
def render(self):
return [y for y in [x.render() for x in self] if y is not None]
@classmethod
def from_tiles(cls, tiles, *args, entity_kwargs=None, **kwargs):
collection = cls(*args, **kwargs)
entities = [cls._entity(tile, str_ident=i,
**entity_kwargs if entity_kwargs is not None else {})
for i, tile in enumerate(tiles)]
collection.add_items(entities)
return collection
@classmethod
def from_coordinates(cls, positions: [(int, int)], tiles, *args, entity_kwargs=None, **kwargs, ):
return cls.from_tiles([tiles.by_pos(position) for position in positions], tiles.size, *args,
entity_kwargs=entity_kwargs,
**kwargs)
@property
def tiles(self):
return [entity.tile for entity in self]
def __delitem__(self, name):
idx, obj = next((i, obj) for i, obj in enumerate(self) if obj.name == name)
obj.tile.leave(obj)
super().__delitem__(name)
def by_pos(self, pos: (int, int)):
pos = tuple(pos)
try:
return next(e for e in self if e.pos == pos)
except StopIteration:
pass
except ValueError:
print()
@property
def positions(self):
return [e.pos for e in self]
def notify_del_entity(self, entity: Entity):
try:
self.pos_dict[entity.pos].remove(entity)
except (ValueError, AttributeError):
pass
# noinspection PyUnresolvedReferences,PyTypeChecker
class IsBoundMixin:
@property
def name(self):
return f'{self.__class__.__name__}({self._bound_entity.name})'
def __repr__(self):
return f'{self.__class__.__name__}#{self._bound_entity.name}({self._data})'
def bind(self, entity):
# noinspection PyAttributeOutsideInit
self._bound_entity = entity
return c.VALID
def belongs_to_entity(self, entity):
return self._bound_entity == entity
# noinspection PyUnresolvedReferences,PyTypeChecker
class HasBoundedMixin:
@property
def obs_names(self):
return [x.name for x in self]
def by_entity(self, entity):
try:
return next((x for x in self if x.belongs_to_entity(entity)))
except StopIteration:
return None
def idx_by_entity(self, entity):
try:
return next((idx for idx, x in enumerate(self) if x.belongs_to_entity(entity)))
except StopIteration:
return None

View File

@@ -0,0 +1,141 @@
from collections import defaultdict
from typing import List
import numpy as np
from environment.entity.object import Object
class Objects:
_entity = Object
@property
def observers(self):
return self._observers
@property
def obs_tag(self):
return self.__class__.__name__
@staticmethod
def render():
return []
@property
def obs_pairs(self):
return [(self.name, self)]
@property
def names(self):
# noinspection PyUnresolvedReferences
return [x.name for x in self]
@property
def name(self):
return f'{self.__class__.__name__}'
def __init__(self, *args, **kwargs):
self._data = defaultdict(lambda: None)
self._observers = list()
self.pos_dict = defaultdict(list)
def __len__(self):
return len(self._data)
def __iter__(self):
return iter(self.values())
def add_item(self, item: _entity):
assert_str = f'All item names have to be of type {self._entity}, but were {item.__class__}.,'
assert isinstance(item, self._entity), assert_str
assert self._data[item.name] is None, f'{item.name} allready exists!!!'
self._data.update({item.name: item})
item.set_collection(self)
for observer in self.observers:
observer.notify_add_entity(item)
return self
# noinspection PyUnresolvedReferences
def del_observer(self, observer):
self.observers.remove(observer)
for entity in self:
if observer in entity.observers:
entity.del_observer(observer)
# noinspection PyUnresolvedReferences
def add_observer(self, observer):
self.observers.append(observer)
for entity in self:
if observer not in entity.observers:
entity.add_observer(observer)
def __delitem__(self, name):
for observer in self.observers:
observer.notify_del_entity(name)
# noinspection PyTypeChecker
del self._data[name]
def add_items(self, items: List[_entity]):
for item in items:
self.add_item(item)
return self
def keys(self):
return self._data.keys()
def values(self):
return self._data.values()
def items(self):
return self._data.items()
def _get_index(self, item):
try:
return next(i for i, v in enumerate(self._data.values()) if v == item)
except StopIteration:
return None
def __getitem__(self, item):
if isinstance(item, (int, np.int64, np.int32)):
if item < 0:
item = len(self._data) - abs(item)
try:
return next(v for i, v in enumerate(self._data.values()) if i == item)
except StopIteration:
return None
try:
return self._data[item]
except KeyError:
return None
except TypeError:
print('Ups')
raise TypeError
def __repr__(self):
return f'{self.__class__.__name__}[{dict(self._data)}]'
def notify_change_pos(self, entity: object):
try:
self.pos_dict[entity.last_pos].remove(entity)
except (ValueError, AttributeError):
pass
if entity.has_position:
try:
self.pos_dict[entity.pos].append(entity)
except (ValueError, AttributeError):
pass
def notify_del_entity(self, entity: Object):
try:
self.pos_dict[entity.pos].remove(entity)
except (ValueError, AttributeError):
pass
def notify_add_entity(self, entity: Object):
try:
entity.add_observer(self)
self.pos_dict[entity.pos].append(entity)
except (ValueError, AttributeError):
pass

View File

@@ -0,0 +1,78 @@
import numbers
from typing import List, Union, Dict
import numpy as np
from environment.groups.env_objects import EnvObjects
from environment.groups.objects import Objects
from environment.groups.mixins import HasBoundedMixin, PositionMixin
from environment.entity.util import PlaceHolder, GlobalPosition
from environment.utils import helpers as h
from environment import constants as c
class Combined(PositionMixin, EnvObjects):
@property
def name(self):
return f'{super().name}({self._ident or self._names})'
@property
def names(self):
return self._names
def __init__(self, names: List[str], *args, identifier: Union[None, str] = None, **kwargs):
super().__init__(*args, **kwargs)
self._ident = identifier
self._names = names or list()
@property
def obs_tag(self):
return self.name
@property
def obs_pairs(self):
return [(name, None) for name in self.names]
class GlobalPositions(HasBoundedMixin, EnvObjects):
_entity = GlobalPosition
is_blocking_light = False,
can_collide = False
def __init__(self, *args, **kwargs):
super(GlobalPositions, self).__init__(*args, **kwargs)
class Zones(Objects):
@property
def accounting_zones(self):
return [self[idx] for idx, name in self.items() if name != c.DANGER_ZONE]
def __init__(self, parsed_level):
raise NotImplementedError('This needs a Rework')
super(Zones, self).__init__()
slices = list()
self._accounting_zones = list()
self._danger_zones = list()
for symbol in np.unique(parsed_level):
if symbol == c.VALUE_OCCUPIED_CELL:
continue
elif symbol == c.DANGER_ZONE:
self + symbol
slices.append(h.one_hot_level(parsed_level, symbol))
self._danger_zones.append(symbol)
else:
self + symbol
slices.append(h.one_hot_level(parsed_level, symbol))
self._accounting_zones.append(symbol)
self._zone_slices = np.stack(slices)
def __getitem__(self, item):
return self._zone_slices[item]
def add_items(self, other: Union[str, List[str]]):
raise AttributeError('You are not allowed to add additional Zones in runtime.')

View File

@@ -0,0 +1,56 @@
import random
from typing import List
import numpy as np
from environment import constants as c
from environment.groups.env_objects import EnvObjects
from environment.groups.mixins import PositionMixin
from environment.entity.wall_floor import Wall, Floor
class Walls(PositionMixin, EnvObjects):
_entity = Wall
symbol = c.SYMBOL_WALL
def __init__(self, *args, **kwargs):
super(Walls, self).__init__(*args, **kwargs)
self._value = c.VALUE_OCCUPIED_CELL
@classmethod
def from_coordinates(cls, argwhere_coordinates, *args, **kwargs):
tiles = cls(*args, **kwargs)
# noinspection PyTypeChecker
tiles.add_items([cls._entity(pos) for pos in argwhere_coordinates])
return tiles
@classmethod
def from_tiles(cls, tiles, *args, **kwargs):
raise RuntimeError()
class Floors(Walls):
_entity = Floor
symbol = c.SYMBOL_FLOOR
is_blocking_light: bool = False
can_collide: bool = False
def __init__(self, *args, **kwargs):
super(Floors, self).__init__(*args, **kwargs)
self._value = c.VALUE_FREE_CELL
@property
def occupied_tiles(self):
tiles = [tile for tile in self if tile.is_occupied()]
random.shuffle(tiles)
return tiles
@property
def empty_tiles(self) -> List[Floor]:
tiles = [tile for tile in self if tile.is_empty()]
random.shuffle(tiles)
return tiles
@classmethod
def from_tiles(cls, tiles, *args, **kwargs):
raise RuntimeError()

View File

View File

@@ -0,0 +1,64 @@
import pickle
from os import PathLike
from pathlib import Path
from typing import Union
from gymnasium import Wrapper
from environment.utils.helpers import IGNORED_DF_COLUMNS
from environment.factory import REC_TAC
import pandas as pd
from plotting.compare_runs import plot_single_run
class EnvMonitor(Wrapper):
ext = 'png'
def __init__(self, env, filepath: Union[str, PathLike] = None):
super(EnvMonitor, self).__init__(env)
self._filepath = filepath
self._monitor_df = pd.DataFrame()
self._monitor_dict = dict()
def __getattr__(self, item):
return getattr(self.unwrapped, item)
def step(self, action):
obs_type, obs, reward, done, info = self.env.step(action)
self._read_info(info)
self._read_done(done)
return obs_type, obs, reward, done, info
def reset(self):
return self.unwrapped.reset()
def _read_info(self, info: dict):
self._monitor_dict[len(self._monitor_dict)] = {
key: val for key, val in info.items() if
key not in ['terminal_observation', 'episode'] and not key.startswith(REC_TAC)}
return
def _read_done(self, done):
if done:
env_monitor_df = pd.DataFrame.from_dict(self._monitor_dict, orient='index')
self._monitor_dict = dict()
columns = [col for col in env_monitor_df.columns if col not in IGNORED_DF_COLUMNS]
env_monitor_df = env_monitor_df.aggregate(
{col: 'mean' if col.endswith('ount') else 'sum' for col in columns}
)
env_monitor_df['episode'] = len(self._monitor_df)
self._monitor_df = self._monitor_df.append([env_monitor_df])
else:
pass
return
def save_run(self, filepath: Union[Path, str, None] = None, auto_plotting_keys=None):
filepath = Path(filepath or self._filepath)
filepath.parent.mkdir(exist_ok=True, parents=True)
with filepath.open('wb') as f:
pickle.dump(self._monitor_df.reset_index(), f, protocol=pickle.HIGHEST_PROTOCOL)
if auto_plotting_keys:
plot_single_run(filepath, column_keys=auto_plotting_keys)

View File

@@ -0,0 +1,152 @@
import warnings
from collections import defaultdict
from os import PathLike
from pathlib import Path
from typing import Union
from gymnasium import Wrapper
import numpy as np
import pandas as pd
import simplejson
from environment.factory import REC_TAC
class EnvRecorder(Wrapper):
def __init__(self, env, entities: str = 'all', filepath: Union[str, PathLike] = None, freq: int = 0):
super(EnvRecorder, self).__init__(env)
self.filepath = filepath
self.freq = freq
self._recorder_dict = defaultdict(list)
self._recorder_out_list = list()
self._episode_counter = 1
self._do_record_dict = defaultdict(lambda: False)
if isinstance(entities, str):
if entities.lower() == 'all':
self._entities = None
else:
self._entities = [entities]
else:
self._entities = entities
def __getattr__(self, item):
return getattr(self.unwrapped, item)
def reset(self):
self._on_training_start()
return self.unwrapped.reset()
def _on_training_start(self) -> None:
assert self.start_recording()
def _read_info(self, env_idx, info: dict):
if info_dict := {key.replace(REC_TAC, ''): val for key, val in info.items() if key.startswith(f'{REC_TAC}')}:
if self._entities:
info_dict = {k: v for k, v in info_dict.items() if k in self._entities}
self._recorder_dict[env_idx].append(info_dict)
else:
pass
return True
def _read_done(self, env_idx, done):
if done:
self._recorder_out_list.append({'steps': self._recorder_dict[env_idx],
'episode': self._episode_counter})
self._recorder_dict[env_idx] = list()
else:
pass
def step(self, actions):
step_result = self.unwrapped.step(actions)
if self.do_record_episode(0):
info = step_result[-1]
self._read_info(0, info)
if self._do_record_dict[0]:
self._read_done(0, step_result[-2])
return step_result
def finalize(self):
self._on_training_end()
return True
def save_records(self, filepath: Union[Path, str, None] = None,
only_deltas=True,
save_occupation_map=False,
save_trajectory_map=False,
):
filepath = Path(filepath or self.filepath)
filepath.parent.mkdir(exist_ok=True, parents=True)
# cls.out_file.unlink(missing_ok=True)
with filepath.open('w') as f:
if only_deltas:
from deepdiff import DeepDiff, Delta
diff_dict = [DeepDiff(t1,t2, ignore_order=True)
for t1, t2 in zip(self._recorder_out_list, self._recorder_out_list[1:])
]
out_dict = {'episodes': diff_dict}
else:
out_dict = {'episodes': self._recorder_out_list}
out_dict.update(
{'n_episodes': self._episode_counter,
'env_params': self.env.params,
'header': self.env.summarize_header
})
try:
simplejson.dump(out_dict, f, indent=4)
except TypeError:
print('Shit')
if save_occupation_map:
a = np.zeros((15, 15))
# noinspection PyTypeChecker
for episode in out_dict['episodes']:
df = pd.DataFrame([y for x in episode['steps'] for y in x['Agents']])
b = list(df[['x', 'y']].to_records(index=False))
np.add.at(a, tuple(zip(*b)), 1)
# a = np.rot90(a)
import seaborn as sns
from matplotlib import pyplot as plt
hm = sns.heatmap(data=a)
hm.set_title('Very Nice Heatmap')
plt.show()
if save_trajectory_map:
raise NotImplementedError('This has not yet been implemented.')
def do_record_episode(self, env_idx):
if not self._recorder_dict[env_idx]:
if self.freq:
self._do_record_dict[env_idx] = (self.freq == -1) or (self._episode_counter % self.freq) == 0
else:
self._do_record_dict[env_idx] = False
warnings.warn('You did wrap your Environment with a recorder, but set the freq to zero\n'
'Nothing will be recorded')
self._episode_counter += 1
else:
pass
return self._do_record_dict[env_idx]
def _on_step(self) -> bool:
for env_idx, info in enumerate(self.locals.get('infos', [])):
if self._do_record_dict[env_idx]:
self._read_info(env_idx, info)
dones = list(enumerate(self.locals.get('dones', [])))
dones.extend(list(enumerate(self.locals.get('done', []))))
for env_idx, done in dones:
if self._do_record_dict[env_idx]:
self._read_done(env_idx, done)
return True
def _on_training_end(self) -> None:
for env_idx in range(len(self._recorder_dict)):
if self._recorder_dict[env_idx]:
self._recorder_out_list.append({'steps': self._recorder_dict[env_idx],
'episode': self._episode_counter})
pass

4
environment/rewards.py Normal file
View File

@@ -0,0 +1,4 @@
MOVEMENTS_VALID: float = -0.001
MOVEMENTS_FAIL: float = -0.05
NOOP: float = -0.01
COLLISION: float = -0.5

83
environment/rules.py Normal file
View File

@@ -0,0 +1,83 @@
import abc
from typing import Union, List
from environment.utils.results import Result, TickResult, DoneResult, ActionResult
from environment import constants as c
from environment import rewards as r
class Rule(abc.ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self):
pass
def __repr__(self):
return f'{self.name}'
def on_init(self, state):
return []
def on_reset(self):
return []
def tick_pre_step(self, state) -> List[TickResult]:
return []
def tick_step(self, state) -> List[TickResult]:
return []
def tick_post_step(self, state) -> List[TickResult]:
return []
def on_check_done(self, state) -> List[DoneResult]:
return []
class MaxStepsReached(Rule):
def __init__(self, max_steps: int = 500):
super().__init__()
self.max_steps = max_steps
def on_init(self, state):
pass
def on_check_done(self, state):
if self.max_steps <= state.curr_step:
return [DoneResult(validity=c.VALID, identifier=self.name, reward=0)]
return [DoneResult(validity=c.NOT_VALID, identifier=self.name, reward=0)]
class Collision(Rule):
def __init__(self, done_at_collisions: bool = False):
super().__init__()
self.done_at_collisions = done_at_collisions
self.curr_done = False
def tick_post_step(self, state) -> List[TickResult]:
self.curr_done = False
tiles_with_collisions = state.get_all_tiles_with_collisions()
results = list()
for tile in tiles_with_collisions:
guests = tile.guests_that_can_collide
if len(guests) >= 2:
for i, guest in enumerate(guests):
try:
guest.set_state(TickResult(identifier=c.COLLISION, reward=r.COLLISION,
validity=c.NOT_VALID, entity=self))
except AttributeError:
pass
results.append(TickResult(entity=guest, identifier=c.COLLISION,
reward=r.COLLISION, validity=c.VALID))
self.curr_done = True
return results
def on_check_done(self, state) -> List[DoneResult]:
if self.curr_done and self.done_at_collisions:
return [DoneResult(validity=c.VALID, identifier=c.COLLISION, reward=r.COLLISION)]
return [DoneResult(validity=c.NOT_VALID, identifier=self.name, reward=0)]

View File

View File

@@ -0,0 +1,120 @@
from pathlib import Path
import yaml
from environment.groups.global_entities import Entities
from environment.groups.agents import Agents
from environment.entity.agent import Agent
from environment.utils.helpers import locate_and_import_class
from environment import constants as c
DEFAULT_PATH = 'environment'
MODULE_PATH = 'modules'
class FactoryConfigParser(object):
default_entites = []
default_rules = ['MaxStepsReached', 'Collision']
default_actions = [c.MOVE8, c.NOOP]
default_observations = [c.WALLS, c.AGENTS]
def __init__(self, config_path):
self.config_path = Path(config_path)
self.config = yaml.safe_load(config_path.open())
self.do_record = False
def __getattr__(self, item):
return self['General'][item]
def _get_sub_list(self, primary_key: str, sub_key: str):
return [{key: [s for k, v in val.items() if k == sub_key for s in v] for key, val in x.items()
} for x in self.config[primary_key]]
@property
def agent_actions(self):
return self._get_sub_list('Agents', "Actions")
@property
def agent_observations(self):
return self._get_sub_list('Agents', "Observations")
@property
def rules(self):
return self.config['Rules']
@property
def agents(self):
return self.config['Agents']
@property
def entities(self):
return self.config['Entities']
def __repr__(self):
return str(self.config)
def __getitem__(self, item):
return self.config[item]
def load_entities(self):
# entites = Entities()
entity_classes = dict()
entities = []
if c.DEFAULTS in self.entities:
entities.extend(self.default_entites)
entities.extend(x for x in self.entities if x != c.DEFAULTS)
for entity in entities:
folder_path = MODULE_PATH if entity not in self.default_entites else DEFAULT_PATH
entity_class = locate_and_import_class(entity, folder_path)
entity_kwargs = self.entities.get(entity, {})
entity_symbol = entity_class.symbol if hasattr(entity_class, 'symbol') else None
entity_classes.update({entity: {'class': entity_class, 'kwargs': entity_kwargs, 'symbol': entity_symbol}})
return entity_classes
def load_agents(self, size, free_tiles):
agents = Agents(size)
base_env_actions = self.default_actions.copy() + [c.MOVE4]
for name in self.agents:
# Actions
actions = list()
if c.DEFAULTS in self.agents[name]['Actions']:
actions.extend(self.default_actions)
actions.extend(x for x in self.agents[name]['Actions'] if x != c.DEFAULTS)
parsed_actions = list()
for action in actions:
folder_path = MODULE_PATH if action not in base_env_actions else DEFAULT_PATH
class_or_classes = locate_and_import_class(action, folder_path)
try:
parsed_actions.extend(class_or_classes)
except TypeError:
parsed_actions.append(class_or_classes)
parsed_actions = [x() for x in parsed_actions]
# Observation
observations = list()
if c.DEFAULTS in self.agents[name]['Observations']:
observations.extend(self.default_observations)
observations.extend(x for x in self.agents[name]['Observations'] if x != c.DEFAULTS)
agent = Agent(parsed_actions, observations, free_tiles.pop(), str_ident=name)
agents.add_item(agent)
return agents
def load_rules(self):
# entites = Entities()
rules_classes = dict()
rules = []
if c.DEFAULTS in self.rules:
for rule in self.default_rules:
if rule not in rules:
rules.append(rule)
rules.extend(x for x in self.rules if x != c.DEFAULTS)
for rule in rules:
folder_path = MODULE_PATH if rule not in self.default_rules else DEFAULT_PATH
rule_class = locate_and_import_class(rule, folder_path)
rule_kwargs = self.rules.get(rule, {})
rules_classes.update({rule: {'class': rule_class, 'kwargs': rule_kwargs}})
return rules_classes

View File

@@ -0,0 +1,272 @@
import importlib
import itertools
from collections import defaultdict
from pathlib import PurePath, Path
from typing import Union, Dict, List
import networkx as nx
import numpy as np
from numpy.typing import ArrayLike
from environment import constants as c
"""
This file is used for:
1. string based definition
Use a class like `Constants`, to define attributes, which then reveal strings.
These can be used for naming convention along the environments as well as keys for mappings such as dicts etc.
When defining new envs, use class inheritance.
2. utility function definition
There are static utility functions which are not bound to a specific environment.
In this file they are defined to be used across the entire package.
"""
LEVELS_DIR = 'modules/levels' # for use in studies and experiments
STEPS_START = 1 # Define where to the stepcount; which is the first step
# Not used anymore? Clean!
# TO_BE_AVERAGED = ['dirt_amount', 'dirty_tiles']
IGNORED_DF_COLUMNS = ['Episode', 'Run', # For plotting, which values are ignored when loading monitor files
'train_step', 'step', 'index', 'dirt_amount', 'dirty_tile_count', 'terminal_observation',
'episode']
POS_MASK = np.asarray([[[-1, -1], [0, -1], [1, -1]],
[[-1, 0], [0, 0], [1, 0]],
[[-1, 1], [0, 1], [1, 1]]])
MOVEMAP = defaultdict(lambda: (0, 0),
{c.NORTH: (-1, 0), c.NORTHEAST: (-1, 1),
c.EAST: (0, 1), c.SOUTHEAST: (1, 1),
c.SOUTH: (1, 0), c.SOUTHWEST: (1, -1),
c.WEST: (0, -1), c.NORTHWEST: (-1, -1)
}
)
class ObservationTranslator:
def __init__(self, this_named_observation_space: Dict[str, dict],
*per_agent_named_obs_spaces: Dict[str, dict],
placeholder_fill_value: Union[int, str, None] = None):
"""
This is a helper class, which converts agent observations from joined environments.
For example, agent trained in different environments may expect different observations.
This class translates from larger observations spaces to smaller.
A string _identifier based approach is used.
Currently, it is not possible to mix different obs shapes.
:param this_named_observation_space: `Named observation space` of the joined environment.
:type this_named_observation_space: Dict[str, dict]
:param per_agent_named_obs_spaces: `Named observation space` one for each agent. Overloaded.
type per_agent_named_obs_spaces: Dict[str, dict]
:param placeholder_fill_value: Currently not fully implemented!!!
:type placeholder_fill_value: Union[int, str] = 'N')
"""
if isinstance(placeholder_fill_value, str):
if placeholder_fill_value.lower() in ['normal', 'n']:
self.random_fill = np.random.normal
elif placeholder_fill_value.lower() in ['uniform', 'u']:
self.random_fill = np.random.uniform
else:
raise ValueError('Please chooe between "uniform" or "normal" ("u", "n").')
elif isinstance(placeholder_fill_value, int):
raise NotImplementedError('"Future Work."')
else:
self.random_fill = None
self._this_named_obs_space = this_named_observation_space
self._per_agent_named_obs_space = list(per_agent_named_obs_spaces)
def translate_observation(self, agent_idx: int, obs):
target_obs_space = self._per_agent_named_obs_space[agent_idx]
translation = dict()
for name, idxs in target_obs_space.items():
if name in self._this_named_obs_space:
for target_idx, this_idx in zip(idxs, self._this_named_obs_space[name]):
taken_slice = np.take(obs, [this_idx], axis=1 if obs.ndim == 4 else 0)
translation[target_idx] = taken_slice
elif random_fill := self.random_fill:
for target_idx in idxs:
translation[target_idx] = random_fill(size=obs.shape[:-3] + (1,) + obs.shape[-2:])
else:
for target_idx in idxs:
translation[target_idx] = np.zeros(shape=(obs.shape[:-3] + (1,) + obs.shape[-2:]))
translation = dict(sorted(translation.items()))
return np.concatenate(list(translation.values()), axis=-3)
def translate_observations(self, observations: List[ArrayLike]):
return [self.translate_observation(idx, observation) for idx, observation in enumerate(observations)]
def __call__(self, observations):
return self.translate_observations(observations)
class ActionTranslator:
def __init__(self, target_named_action_space: Dict[str, int], *per_agent_named_action_space: Dict[str, int]):
"""
This is a helper class, which converts agent action spaces to a joined environments action space.
For example, agent trained in different environments may have different action spaces.
This class translates from smaller individual agent action spaces to larger joined spaces.
A string _identifier based approach is used.
:param target_named_action_space: Joined `Named action space` for the current environment.
:type target_named_action_space: Dict[str, dict]
:param per_agent_named_action_space: `Named action space` one for each agent. Overloaded.
:type per_agent_named_action_space: Dict[str, dict]
"""
self._target_named_action_space = target_named_action_space
if isinstance(per_agent_named_action_space, (list, tuple)):
self._per_agent_named_action_space = per_agent_named_action_space
else:
self._per_agent_named_action_space = list(per_agent_named_action_space)
self._per_agent_idx_actions = [{idx: a for a, idx in x.items()} for x in self._per_agent_named_action_space]
def translate_action(self, agent_idx: int, action: int):
named_action = self._per_agent_idx_actions[agent_idx][action]
translated_action = self._target_named_action_space[named_action]
return translated_action
def translate_actions(self, actions: List[int]):
return [self.translate_action(idx, action) for idx, action in enumerate(actions)]
def __call__(self, actions):
return self.translate_actions(actions)
# Utility functions
def parse_level(path):
"""
Given the path to a strin based `level` or `map` representation, this function reads the content.
Cleans `space`, checks for equal length of each row and returns a list of lists.
:param path: Path to the `level` or `map` file on harddrive.
:type path: os.Pathlike
:return: The read string representation of the `level` or `map`
:rtype: List[List[str]]
"""
with path.open('r') as lvl:
level = list(map(lambda x: list(x.strip()), lvl.readlines()))
if len(set([len(line) for line in level])) > 1:
raise AssertionError('Every row of the level string must be of equal length.')
return level
def one_hot_level(level, symbol: str):
"""
Given a string based level representation (list of lists, see function `parse_level`), this function creates a
binary numpy array or `grid`. Grid values that equal `wall_char` become of `Constants.OCCUPIED_CELL` value.
Can be changed to filter for any symbol.
:param level: String based level representation (list of lists, see function `parse_level`).
:param symbol: List[List[str]]
:return: Binary numpy array
:rtype: np.typing._array_like.ArrayLike
"""
grid = np.array(level)
binary_grid = np.zeros(grid.shape, dtype=np.int8)
binary_grid[grid == symbol] = c.VALUE_OCCUPIED_CELL
return binary_grid
def is_move(action_name: str):
return action_name in MOVEMAP.keys()
def asset_str(agent):
"""
FIXME @ romue
"""
# What does this abonimation do?
# if any([x is None for x in [cls._slices[j] for j in agent.collisions]]):
# print('error')
if step_result := agent.step_result:
action = step_result['action_name']
valid = step_result['action_valid']
col_names = [x.name for x in step_result['collisions']]
if any(c.AGENT in name for name in col_names):
return 'agent_collision', 'blank'
elif not valid or c.LEVEL in col_names or c.AGENT in col_names:
return c.AGENT, 'invalid'
elif valid and not is_move(action):
return c.AGENT, 'valid'
elif valid and is_move(action):
return c.AGENT, 'move'
else:
return c.AGENT, 'idle'
else:
return c.AGENT, 'idle'
def points_to_graph(coordiniates_or_tiles, allow_euclidean_connections=True, allow_manhattan_connections=True):
"""
Given a set of coordinates, this function contructs a non-directed graph, by conncting adjected points.
There are three combinations of settings:
Allow all neigbors: Distance(a, b) <= sqrt(2)
Allow only manhattan: Distance(a, b) == 1
Allow only euclidean: Distance(a, b) == sqrt(2)
:param coordiniates_or_tiles: A set of coordinates.
:type coordiniates_or_tiles: Tiles
:param allow_euclidean_connections: Whether to regard diagonal adjected cells as neighbors
:type: bool
:param allow_manhattan_connections: Whether to regard directly adjected cells as neighbors
:type: bool
:return: A graph with nodes that are conneceted as specified by the parameters.
:rtype: nx.Graph
"""
assert allow_euclidean_connections or allow_manhattan_connections
if hasattr(coordiniates_or_tiles, 'positions'):
coordiniates_or_tiles = coordiniates_or_tiles.positions
possible_connections = itertools.combinations(coordiniates_or_tiles, 2)
graph = nx.Graph()
for a, b in possible_connections:
diff = np.linalg.norm(np.asarray(a)-np.asarray(b))
if allow_manhattan_connections and allow_euclidean_connections and diff <= np.sqrt(2):
graph.add_edge(a, b)
elif not allow_manhattan_connections and allow_euclidean_connections and diff == np.sqrt(2):
graph.add_edge(a, b)
elif allow_manhattan_connections and not allow_euclidean_connections and diff == 1:
graph.add_edge(a, b)
return graph
def locate_and_import_class(class_name, folder_path: Union[str, PurePath] = ''):
"""Locate an object by name or dotted path, importing as necessary."""
import sys
sys.path.append("..")
folder_path = Path(folder_path)
module_paths = [x for x in folder_path.rglob('*.py') if x.is_file() and '__init__' not in x.name]
# possible_package_path = folder_path / '__init__.py'
# package = str(possible_package_path) if possible_package_path.exists() else None
all_found_modules = list()
for module_path in module_paths:
mod = importlib.import_module('.'.join([x.replace('.py', '') for x in module_path.parts]))
all_found_modules.extend([x for x in dir(mod) if not(x.startswith('__') or len(x) < 2 or x.isupper())
and x not in ['Entity', 'NamedTuple', 'List', 'Rule', 'Union', 'random', 'Floor'
'TickResult', 'ActionResult', 'Action', 'Agent', 'deque',
'BoundEntityMixin', 'RenderEntity', 'TemplateRule', 'defaultdict',
'is_move', 'Objects', 'PositionMixin', 'IsBoundMixin', 'EnvObject',
'EnvObjects',]])
try:
model_class = mod.__getattribute__(class_name)
return model_class
except AttributeError:
continue
raise AttributeError(f'Class "{class_name}" was not found!!!"\n'
f'Check the {folder_path.name} name.\n'
f'Possible Options are:\n{set(all_found_modules)}')

View File

@@ -0,0 +1,55 @@
from os import PathLike
from pathlib import Path
from typing import Dict
import numpy as np
from environment.groups.global_entities import Entities
from environment.groups.wall_n_floors import Walls, Floors
from environment.utils import helpers as h
from environment import constants as c
class LevelParser(object):
@property
def pomdp_d(self):
return self.pomdp_r * 2 + 1
def __init__(self, level_file_path: PathLike, entity_parse_dict: Dict[Entities, dict], pomdp_r=0):
self.pomdp_r = pomdp_r
self.e_p_dict = entity_parse_dict
self._parsed_level = h.parse_level(Path(level_file_path))
level_array = h.one_hot_level(self._parsed_level, c.SYMBOL_WALL)
self.level_shape = level_array.shape
self.size = self.pomdp_r**2 if self.pomdp_r else np.prod(self.level_shape)
def do_init(self):
entities = Entities()
# Walls
level_array = h.one_hot_level(self._parsed_level, c.SYMBOL_WALL)
walls = Walls.from_coordinates(np.argwhere(level_array == c.VALUE_OCCUPIED_CELL), self.size)
entities.add_items({c.WALL: walls})
# Floor
floor = Floors.from_coordinates(np.argwhere(level_array == c.VALUE_FREE_CELL), self.size)
entities.add_items({c.FLOOR: floor})
# All other
for es_name in self.e_p_dict:
e_class, e_kwargs = self.e_p_dict[es_name]['class'], self.e_p_dict[es_name]['kwargs']
if hasattr(e_class, 'symbol'):
level_array = h.one_hot_level(self._parsed_level, symbol=e_class.symbol)
if np.any(level_array):
e = e_class.from_coordinates(np.argwhere(level_array == c.VALUE_OCCUPIED_CELL).tolist(),
entities[c.FLOOR], self.size, entity_kwargs=e_kwargs
)
else:
raise ValueError(f'No {e_class} (Symbol: {e_class.symbol}) could be found!\n'
f'Check your level file!')
else:
e = e_class(self.size, **e_kwargs)
entities.add_items({e.name: e})
return entities

View File

@@ -0,0 +1,315 @@
import math
from collections import defaultdict
from itertools import product
from typing import Dict, List
import numpy as np
from numba import njit
from environment.groups.utils import Combined
from environment.utils.states import Gamestate
from environment import constants as c
class OBSBuilder(object):
default_obs = [c.WALLS, c.OTHERS]
@property
def pomdp_d(self):
if self.pomdp_r:
return (self.pomdp_r * 2) + 1
else:
return 0
def __init__(self, level_shape: np.size, state: Gamestate, pomdp_r: int):
self.all_obs = dict()
self.light_blockers = defaultdict(lambda: False)
self.positional = defaultdict(lambda: False)
self.non_positional = defaultdict(lambda: False)
self.ray_caster = dict()
self.level_shape = level_shape
self.pomdp_r = pomdp_r
self.obs_shape = (self.pomdp_d, self.pomdp_d) if self.pomdp_r else self.level_shape
self.size = np.prod(self.obs_shape)
self.obs_layers = dict()
self.build_structured_obs_block(state)
self.curr_lightmaps = dict()
def build_structured_obs_block(self, state):
self.all_obs[c.PLACEHOLDER] = np.full(self.obs_shape, 0, dtype=float)
self.all_obs.update({key: obj for key, obj in state.entities.obs_pairs})
def observation_space(self, state):
from gymnasium.spaces import Tuple, Box
obsn = self.refresh_and_build_for_all(state)
if len(state[c.AGENT]) == 1:
space = Box(low=0, high=1, shape=next(x for x in obsn.values()).shape, dtype=np.float32)
else:
space = Tuple([Box(low=0, high=1, shape=obs.shape, dtype=np.float32) for obs in obsn.values()])
return space
def named_observation_space(self, state):
return self.refresh_and_build_for_all(state)
def refresh_and_build_for_all(self, state) -> (dict, dict):
self.build_structured_obs_block(state)
info = {}
return {agent.name: self.build_for_agent(agent, state)[0] for agent in state[c.AGENT]}, info
def refresh_and_build_named_for_all(self, state) -> Dict[str, Dict[str, np.ndarray]]:
self.build_structured_obs_block(state)
named_obs_dict = {}
for agent in state[c.AGENT]:
obs, names = self.build_for_agent(agent, state)
named_obs_dict[agent.name] = {'observation': obs, 'names': names}
return named_obs_dict
def build_for_agent(self, agent, state) -> (List[str], np.ndarray):
try:
agent_want_obs = self.obs_layers[agent.name]
except KeyError:
self._sort_and_name_observation_conf(agent)
agent_want_obs = self.obs_layers[agent.name]
# Handle in-grid observations aka visible observations
visible_entitites = self.ray_caster[agent.name].visible_entities(state.entities)
pre_sort_obs = defaultdict(lambda: np.zeros((self.pomdp_d, self.pomdp_d)))
for e in set(visible_entitites):
x, y = (e.x - agent.x) + self.pomdp_r, (e.y - agent.y) + self.pomdp_r
try:
pre_sort_obs[e.obs_tag][x, y] += e.encoding
except IndexError:
# Seemded to be visible but is out or range
pass
pre_sort_obs = dict(pre_sort_obs)
obs = np.zeros((len(agent_want_obs), self.pomdp_d, self.pomdp_d))
for idx, l_name in enumerate(agent_want_obs):
try:
obs[idx] = pre_sort_obs[l_name]
except KeyError:
if c.COMBINED in l_name:
if combined := [pre_sort_obs[x] for x in self.all_obs[f'{c.COMBINED}({agent.name})'].names
if x in pre_sort_obs]:
obs[idx] = np.sum(combined, axis=0)
elif l_name == c.PLACEHOLDER:
obs[idx] = self.all_obs[c.PLACEHOLDER]
else:
try:
e = self.all_obs[l_name]
except KeyError:
try:
e = self.all_obs[f'{l_name}({agent.name})']
except KeyError:
try:
e = next(x for x in self.all_obs if l_name in x and agent.name in x)
except StopIteration:
raise KeyError(
f'Check typing!\n{l_name} could not be found in:\n{dict(self.all_obs).keys()}')
try:
positional = e.has_position
except AttributeError:
positional = False
if positional:
# Seems to be not visible, so just skip it
# obs[idx] = np.zeros((self.pomdp_d, self.pomdp_d))
# All good
pass
else:
try:
v = e.encodings
except AttributeError:
try:
v = e.encoding
except AttributeError:
raise AttributeError(f'This env. expects Entity-Clases to report their "encoding"')
try:
np.put(obs[idx], range(len(v)), v, mode='raise')
except TypeError:
np.put(obs[idx], 0, v, mode='raise')
except IndexError:
raise ValueError(f'Max(obs.size) for {e.name}: {obs[idx].size}, but was: {len(v)}.')
try:
self.curr_lightmaps[agent.name] = pre_sort_obs[c.FLOORS].astype(bool)
except KeyError:
print()
return obs, self.obs_layers[agent.name]
def _sort_and_name_observation_conf(self, agent):
self.ray_caster[agent.name] = RayCaster(agent, self.pomdp_r)
obs_layers = []
for obs_str in agent.observations:
if isinstance(obs_str, dict):
obs_str, vals = next(obs_str.items().__iter__())
else:
vals = None
if obs_str == c.SELF:
obs_layers.append(agent.name)
elif obs_str == c.DEFAULTS:
obs_layers.extend(self.default_obs)
elif obs_str == c.COMBINED:
if isinstance(vals, str):
vals = [vals]
names = list()
for val in vals:
if val == c.SELF:
names.append(agent.name)
elif val == c.OTHERS:
names.extend([x.name for x in agent.collection if x.name != agent.name])
else:
names.append(val)
combined = Combined(names, self.pomdp_r, identifier=agent.name)
self.all_obs[combined.name] = combined
obs_layers.append(combined.name)
elif obs_str == c.OTHERS:
obs_layers.extend([x for x in self.all_obs if x != agent.name and x.startswith(f'{c.AGENT}[')])
elif obs_str == c.AGENTS:
obs_layers.extend([x for x in self.all_obs if x.startswith(f'{c.AGENT}[')])
else:
obs_layers.append(obs_str)
self.obs_layers[agent.name] = obs_layers
self.curr_lightmaps[agent.name] = np.zeros((self.pomdp_d or self.level_shape[0],
self.pomdp_d or self.level_shape[1]
))
class RayCaster:
def __init__(self, agent, pomdp_r, degs=360):
self.agent = agent
self.pomdp_r = pomdp_r
self.n_rays = 100 # (self.pomdp_r + 1) * 8
self.degs = degs
self.ray_targets = self.build_ray_targets()
self.obs_shape_cube = np.array([self.pomdp_r, self.pomdp_r])
def build_ray_targets(self):
north = np.array([0, -1])*self.pomdp_r
thetas = [np.deg2rad(deg) for deg in np.linspace(-self.degs // 2, self.degs // 2, self.n_rays)[::-1]]
rot_M = [
[[math.cos(theta), -math.sin(theta)],
[math.sin(theta), math.cos(theta)]] for theta in thetas
]
rot_M = np.stack(rot_M, 0)
rot_M = np.unique(np.round(rot_M @ north), axis=0)
return rot_M.astype(int)
@staticmethod
def ray_block_cache(cache_dict, key, callback, ents):
if key not in cache_dict:
cache_dict[key] = callback()
if any(True for e in ents.pos_dict[key] if e.is_blocking_light) and not cache_dict[key]:
print()
return cache_dict[key]
def visible_entities(self, entities):
visible = list()
cache_blocking = {}
for ray in self.get_rays():
rx, ry = ray[0]
for x, y in ray:
cx, cy = x - rx, y - ry
entities_hit = entities.pos_dict[(x, y)]
hits = self.ray_block_cache(cache_blocking,
(x, y),
lambda: any(True for e in entities_hit if e.is_blocking_light),
entities)
diag_hits = all([
self.ray_block_cache(
cache_blocking,
key,
lambda: all(False for e in entities.pos_dict[key] if not e.is_blocking_light),
entities)
for key in ((x, y-cy), (x-cx, y))
]) if (cx != 0 and cy != 0) else False
visible += entities_hit if not diag_hits else []
if hits or diag_hits:
break
rx, ry = x, y
try:
d = next(x for x in visible if 'Door' in x.name)
v = [x for x in visible if tuple(np.subtract(x.pos, d.pos)) in [(1, 0), (0, 1), (-1, 0), (0, -1)] and x.name.startswith('Floor')]
if len(v) > 2:
pass
except StopIteration:
pass
return visible
def get_rays(self):
a_pos = self.agent.pos
outline = self.ray_targets + a_pos
return self.bresenham_loop(a_pos, outline)
# todo do this once and cache the points!
def get_fov_outline(self) -> np.ndarray:
return self.ray_targets + self.agent.pos
def get_square_outline(self):
agent = self.agent
x_coords = range(agent.x - self.pomdp_r, agent.x + self.pomdp_r + 1)
y_coords = range(agent.y - self.pomdp_r, agent.y + self.pomdp_r + 1)
outline = list(product(x_coords, [agent.y - self.pomdp_r, agent.y + self.pomdp_r])) \
+ list(product([agent.x - self.pomdp_r, agent.x + self.pomdp_r], y_coords))
return outline
@staticmethod
@njit
def bresenham_loop(a_pos, points):
results = []
for end in points:
x1, y1 = a_pos
x2, y2 = end
dx = x2 - x1
dy = y2 - y1
# Determine how steep the line is
is_steep = abs(dy) > abs(dx)
# Rotate line
if is_steep:
x1, y1 = y1, x1
x2, y2 = y2, x2
# Swap start and end points if necessary and store swap state
swapped = False
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
swapped = True
# Recalculate differentials
dx = x2 - x1
dy = y2 - y1
# Calculate error
error = int(dx / 2.0)
ystep = 1 if y1 < y2 else -1
# Iterate over bounding box generating points between start and end
y = y1
points = []
for x in range(int(x1), int(x2) + 1):
coord = [y, x] if is_steep else [x, y]
points.append(coord)
error -= abs(dy)
if error < 0:
y += ystep
error += dx
# Reverse the list if the coordinates were swapped
if swapped:
points.reverse()
results.append(points)
return results

View File

@@ -0,0 +1,16 @@
from dataclasses import dataclass
from typing import Any
import numpy as np
@dataclass
class RenderEntity:
name: str
pos: np.array
value: float = 1
value_operation: str = 'none'
state: str = None
id: int = 0
aux: Any = None
real_name: str = 'none'

View File

@@ -0,0 +1,143 @@
import sys
from pathlib import Path
from collections import deque
from itertools import product
import pygame
from typing import Tuple, Union
import time
import torch
from environment.utils.render import RenderEntity
AGENT: str = 'agent'
STATE_IDLE: str = 'idle'
STATE_MOVE: str = 'move'
STATE_VALID: str = 'valid'
STATE_INVALID: str = 'invalid'
STATE_COLLISION: str = 'agent_collision'
BLANK: str = 'blank'
DOOR: str = 'door'
OPACITY: str = 'opacity'
SCALE: str = 'scale'
class Renderer:
BG_COLOR = (178, 190, 195) # (99, 110, 114)
WHITE = (223, 230, 233) # (200, 200, 200)
AGENT_VIEW_COLOR = (9, 132, 227)
ASSETS = Path(__file__).parent.parent / 'assets'
MODULE_ASSETS = Path(__file__).parent.parent.parent / 'modules'
def __init__(self, lvl_shape: Tuple[int, int] = (16, 16),
lvl_padded_shape: Union[Tuple[int, int], None] = None,
cell_size: int = 40, fps: int = 7,
grid_lines: bool = True, view_radius: int = 2):
self.grid_h, self.grid_w = lvl_shape
self.lvl_padded_shape = lvl_padded_shape if lvl_padded_shape is not None else lvl_shape
self.cell_size = cell_size
self.fps = fps
self.grid_lines = grid_lines
self.view_radius = view_radius
pygame.init()
self.screen_size = (self.grid_w*cell_size, self.grid_h*cell_size)
self.screen = pygame.display.set_mode(self.screen_size)
self.clock = pygame.time.Clock()
assets = list(self.ASSETS.rglob('*.png')) + list(self.MODULE_ASSETS.rglob('*.png'))
self.assets = {path.stem: self.load_asset(str(path), 1) for path in assets}
self.fill_bg()
now = time.time()
self.font = pygame.font.Font(None, 20)
self.font.set_bold(True)
print('Loading System font with pygame.font.Font took', time.time() - now)
def fill_bg(self):
self.screen.fill(Renderer.BG_COLOR)
if self.grid_lines:
w, h = self.screen_size
for x in range(0, w, self.cell_size):
for y in range(0, h, self.cell_size):
rect = pygame.Rect(x, y, self.cell_size, self.cell_size)
pygame.draw.rect(self.screen, Renderer.WHITE, rect, 1)
def blit_params(self, entity):
offset_r, offset_c = (self.lvl_padded_shape[0] - self.grid_h) // 2, \
(self.lvl_padded_shape[1] - self.grid_w) // 2
r, c = entity.pos
r, c = r - offset_r, c-offset_c
img = self.assets[entity.name.lower()]
if entity.value_operation == OPACITY:
img.set_alpha(255*entity.value)
elif entity.value_operation == SCALE:
re = img.get_rect()
img = pygame.transform.smoothscale(
img, (int(entity.value*re.width), int(entity.value*re.height))
)
o = self.cell_size//2
r_, c_ = r*self.cell_size + o, c*self.cell_size + o
rect = img.get_rect()
rect.centerx, rect.centery = c_, r_
return dict(source=img, dest=rect)
def load_asset(self, path, factor=1.0):
s = int(factor*self.cell_size)
asset = pygame.image.load(path).convert_alpha()
asset = pygame.transform.smoothscale(asset, (s, s))
return asset
def visibility_rects(self, bp, view):
rects = []
for i, j in product(range(-self.view_radius, self.view_radius+1),
range(-self.view_radius, self.view_radius+1)):
if view is not None:
if bool(view[self.view_radius+j, self.view_radius+i]):
visibility_rect = bp['dest'].copy()
visibility_rect.centerx += i*self.cell_size
visibility_rect.centery += j*self.cell_size
shape_surf = pygame.Surface(visibility_rect.size, pygame.SRCALPHA)
pygame.draw.rect(shape_surf, self.AGENT_VIEW_COLOR, shape_surf.get_rect())
shape_surf.set_alpha(64)
rects.append(dict(source=shape_surf, dest=visibility_rect))
return rects
def render(self, entities):
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
self.fill_bg()
blits = deque()
for entity in [x for x in entities]:
bp = self.blit_params(entity)
blits.append(bp)
if entity.name.lower() == AGENT:
if self.view_radius > 0:
vis_rects = self.visibility_rects(bp, entity.aux)
blits.extendleft(vis_rects)
if entity.state != BLANK:
agent_state_blits = self.blit_params(
RenderEntity(entity.state, (entity.pos[0] + 0.12, entity.pos[1]), 0.48, SCALE)
)
textsurface = self.font.render(str(entity.id), False, (0, 0, 0))
text_blit = dict(source=textsurface, dest=(bp['dest'].center[0]-.07*self.cell_size,
bp['dest'].center[1]))
blits += [agent_state_blits, text_blit]
for blit in blits:
self.screen.blit(**blit)
pygame.display.flip()
self.clock.tick(self.fps)
rgb_obs = pygame.surfarray.array3d(self.screen)
return torch.from_numpy(rgb_obs).permute(2, 0, 1)
if __name__ == '__main__':
renderer = Renderer(fps=2, cell_size=40)
for pos_i in range(15):
entity_1 = RenderEntity('agent_collision', [5, pos_i], 1, 'idle', 'idle')
renderer.render([entity_1])

View File

@@ -0,0 +1,48 @@
from typing import Union
from dataclasses import dataclass, asdict
from environment.entity.entity import Entity
TYPE_VALUE = 'value'
TYPE_REWARD = 'reward'
types = [TYPE_VALUE, TYPE_REWARD]
@dataclass
class InfoObject:
identifier: str
val_type: str
value: Union[float, int]
@dataclass
class Result:
identifier: str
validity: bool
reward: Union[float, None] = None
value: Union[float, None] = None
entity: Union[Entity, None] = None
def get_infos(self):
n = self.entity.name if self.entity is not None else "Global"
return [InfoObject(identifier=f'{n}_{self.identifier}_{t}',
val_type=t, value=self.__getattribute__(t)) for t in types
if self.__getattribute__(t) is not None]
def __repr__(self):
valid = "not " if not self.validity else ""
return f'{self.__class__.__name__}({self.identifier.capitalize()} {valid}valid: {self.reward})'
@dataclass
class TickResult(Result):
pass
@dataclass
class ActionResult(Result):
pass
@dataclass
class DoneResult(Result):
pass

112
environment/utils/states.py Normal file
View File

@@ -0,0 +1,112 @@
from typing import List, Dict
import numpy as np
from environment.entity.wall_floor import Floor
from environment.rules import Rule
from environment.utils.results import Result
from environment import constants as c
class StepRules:
def __init__(self, *args):
if args:
self.rules = list(args)
else:
self.rules = list()
def __repr__(self):
return f'Rules{[x.name for x in self]}'
def __iter__(self):
return iter(self.rules)
def append(self, item):
assert isinstance(item, Rule)
self.rules.append(item)
return True
def do_all_init(self, state):
for rule in self.rules:
if rule_init_printline := rule.on_init(state):
state.print(rule_init_printline)
return c.VALID
def tick_step_all(self, state):
results = list()
for rule in self.rules:
if tick_step_result := rule.tick_step(state):
results.extend(tick_step_result)
return results
def tick_pre_step_all(self, state):
results = list()
for rule in self.rules:
if tick_pre_step_result := rule.tick_post_step(state):
results.extend(tick_pre_step_result)
return results
def tick_post_step_all(self, state):
results = list()
for rule in self.rules:
if tick_post_step_result := rule.tick_post_step(state):
results.extend(tick_post_step_result)
return results
class Gamestate(object):
@property
def moving_entites(self):
return [y for x in self.entities for y in x if x.can_move]
def __init__(self, entitites, rules: Dict[str, dict], env_seed=69, verbose=False):
self.entities = entitites
self.NO_POS_TILE = Floor(c.VALUE_NO_POS)
self.curr_step = 0
self.curr_actions = None
self.verbose = verbose
self.rng = np.random.default_rng(env_seed)
self.rules = StepRules(*(v['class'](**v['kwargs']) for v in rules.values()))
def __getitem__(self, item):
return self.entities[item]
def __iter__(self):
return iter(e for e in self.entities.values())
def __repr__(self):
return f'{self.__class__.__name__}({len(self.entities)} Entitites @ Step {self.curr_step})'
def tick(self, actions) -> List[Result]:
results = list()
self.curr_step += 1
# Main Agent Step
results.extend(self.rules.tick_pre_step_all(self))
for idx, action_int in enumerate(actions):
agent = self[c.AGENT][idx].clear_temp_state()
action = agent.actions[action_int]
action_result = action.do(agent, self)
results.append(action_result)
agent.set_state(action_result)
results.extend(self.rules.tick_step_all(self))
results.extend(self.rules.tick_post_step_all(self))
return results
def print(self, string):
if self.verbose:
print(string)
def check_done(self):
results = list()
for rule in self.rules:
if on_check_done_result := rule.on_check_done(self):
results.extend(on_check_done_result)
return results
def get_all_tiles_with_collisions(self) -> List[Floor]:
tiles = [self[c.FLOOR].by_pos(pos) for pos, e in self.entities.pos_dict.items()
if sum([x.can_collide for x in e]) > 1]
# tiles = [x for x in self[c.FLOOR] if len(x.guests_that_can_collide) > 1]
return tiles

View File

@@ -0,0 +1,27 @@
import gymnasium as gym
class EnvCombiner(object):
def __init__(self, *envs_cls):
self._env_dict = {env_cls.__name__: env_cls for env_cls in envs_cls}
@staticmethod
def combine_cls(name, *envs_cls):
return type(name, envs_cls, {})
def build(self):
name = f'{"".join([x.lower().replace("factory").capitalize() for x in self._env_dict.keys()])}Factory'
return self.combine_cls(name, tuple(self._env_dict.values()))
class MarlFrameStack(gym.ObservationWrapper):
"""todo @romue404"""
def __init__(self, env):
super().__init__(env)
def observation(self, observation):
if isinstance(self.env, gym.wrappers.FrameStack) and self.env.unwrapped.n_agents > 1:
return observation[0:].swapaxes(0, 1)
return observation