mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-06-18 18:52:52 +02:00
major redesign ob observations and entittes
This commit is contained in:
95
algorithms/static/TSP_base_agent.py
Normal file
95
algorithms/static/TSP_base_agent.py
Normal file
@ -0,0 +1,95 @@
|
||||
from random import choice
|
||||
|
||||
import numpy as np
|
||||
|
||||
from networkx.algorithms.approximation import traveling_salesman as tsp
|
||||
|
||||
from environment.utils.helpers import points_to_graph
|
||||
|
||||
from modules.doors import constants as do
|
||||
from environment import constants as c
|
||||
from environment.utils.helpers import MOVEMAP
|
||||
|
||||
from abc import abstractmethod, ABC
|
||||
|
||||
future_planning = 7
|
||||
|
||||
|
||||
class TSPBaseAgent(ABC):
|
||||
|
||||
def __init__(self, state, agent_i, static_problem: bool = True):
|
||||
self.static_problem = static_problem
|
||||
self.local_optimization = True
|
||||
self._env = state
|
||||
self.state = self._env.state[c.AGENT][agent_i]
|
||||
self._floortile_graph = points_to_graph(self._env[c.FLOOR].positions)
|
||||
self._static_route = None
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, *_, **__) -> int:
|
||||
return 0
|
||||
|
||||
def _use_door_or_move(self, door, target):
|
||||
if door.is_closed:
|
||||
# Translate the action_object to an integer to have the same output as any other model
|
||||
action = do.ACTION_DOOR_USE
|
||||
else:
|
||||
action = self._predict_move(target)
|
||||
return action
|
||||
|
||||
def calculate_tsp_route(self, target_identifier):
|
||||
positions = [x for x in self._env.state[target_identifier].positions if x != c.VALUE_NO_POS]
|
||||
if self.local_optimization:
|
||||
nodes = \
|
||||
[self.state.pos] + \
|
||||
[x for x in positions if max(abs(np.subtract(x, self.state.pos))) < 3]
|
||||
try:
|
||||
while len(nodes) < 7:
|
||||
nodes += [next(x for x in positions if x not in nodes)]
|
||||
except StopIteration:
|
||||
nodes = [self.state.pos] + positions
|
||||
|
||||
else:
|
||||
nodes = [self.state.pos] + positions
|
||||
route = tsp.traveling_salesman_problem(self._floortile_graph,
|
||||
nodes=nodes, cycle=True, method=tsp.greedy_tsp)
|
||||
return route
|
||||
|
||||
def _door_is_close(self):
|
||||
try:
|
||||
return next(y for x in self.state.tile.neighboring_floor for y in x.guests if do.DOOR in y.name)
|
||||
except StopIteration:
|
||||
return None
|
||||
|
||||
def _has_targets(self, target_identifier):
|
||||
return bool(len([x for x in self._env.state[target_identifier] if x.pos != c.VALUE_NO_POS]) >= 1)
|
||||
|
||||
def _predict_move(self, target_identifier):
|
||||
if self._has_targets(target_identifier):
|
||||
if self.static_problem:
|
||||
if not self._static_route:
|
||||
self._static_route = self.calculate_tsp_route(target_identifier)
|
||||
else:
|
||||
pass
|
||||
next_pos = self._static_route.pop(0)
|
||||
while next_pos == self.state.pos:
|
||||
next_pos = self._static_route.pop(0)
|
||||
else:
|
||||
if not self._static_route:
|
||||
self._static_route = self.calculate_tsp_route(target_identifier)[:7]
|
||||
next_pos = self._static_route.pop(0)
|
||||
while next_pos == self.state.pos:
|
||||
next_pos = self._static_route.pop(0)
|
||||
|
||||
diff = np.subtract(next_pos, self.state.pos)
|
||||
# Retrieve action based on the pos dif (like in: What do I have to do to get there?)
|
||||
try:
|
||||
action = next(action for action, pos_diff in MOVEMAP.items() if np.all(diff == pos_diff))
|
||||
except StopIteration:
|
||||
print(f'diff: {diff}')
|
||||
print('This Should not happen!')
|
||||
action = choice(self.state.actions).name
|
||||
else:
|
||||
action = choice(self.state.actions).name
|
||||
# noinspection PyUnboundLocalVariable
|
||||
return action
|
Reference in New Issue
Block a user