new dirt paradigm -> clean everything up

This commit is contained in:
Steffen Illium
2021-10-27 18:47:57 +02:00
parent 35eae72a8d
commit b5c6105b7b
9 changed files with 210 additions and 114 deletions

View File

@ -33,7 +33,7 @@ import pandas as pd
import seaborn as sns
# Define a global studi save path
start_time = 1634134997 # int(time.time())
start_time = 163519000 # int(time.time())
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
"""
@ -70,7 +70,7 @@ There are further distinctions to be made:
def policy_model_kwargs():
return dict(ent_coef=0.01)
return dict(ent_coef=0.05)
def dqn_model_kwargs():
@ -93,21 +93,23 @@ def encapsule_env_factory(env_fctry, env_kwrgs):
if __name__ == '__main__':
train_steps = 5e5
train_steps = 8e5
# Define Global Env Parameters
# Define properties object parameters
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
dirt_props = DirtProperties(clean_amount=2, gain_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=15, max_spawn_ratio=0.05,
dirt_props = DirtProperties(initial_dirt_ratio=0.35, initial_dirt_spawn_r_var=0.1,
clean_amount=0.34,
max_spawn_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
dirt_smear_amount=0.0, agent_can_interact=True)
item_props = ItemProperties(n_items=10, agent_can_interact=True,
spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
factory_kwargs = dict(n_agents=1,
pomdp_r=2, max_steps=400, parse_doors=False,
pomdp_r=2, max_steps=400, parse_doors=True,
level_name='rooms', frames_to_stack=3,
omit_agent_in_obs=True, combin_agent_obs=True, record_episodes=False,
cast_shadows=True, doors_have_area=False, verbose=False,
@ -124,9 +126,9 @@ if __name__ == '__main__':
# Define parameter versions according with #1,2[1,0,N],3
observation_modes = {
# Fill-value = 0
'seperate_0': dict(additional_env_kwargs=dict(additional_agent_placeholder=0)),
# DEACTIVATED 'seperate_0': dict(additional_env_kwargs=dict(additional_agent_placeholder=0)),
# Fill-value = 1
'seperate_1': dict(additional_env_kwargs=dict(additional_agent_placeholder=1)),
# DEACTIVATED 'seperate_1': dict(additional_env_kwargs=dict(additional_agent_placeholder=1)),
# Fill-value = N(0, 1)
'seperate_N': dict(additional_env_kwargs=dict(additional_agent_placeholder='N')),
# Further Adjustments are done post-training
@ -137,10 +139,10 @@ if __name__ == '__main__':
# Train starts here ############################################################
# Build Major Loop parameters, parameter versions, Env Classes and models
if False:
if True:
for observation_mode in observation_modes.keys():
for env_name in env_names:
for model_cls in h.MODEL_MAP.values():
for model_cls in [h.MODEL_MAP['A2C'], h.MODEL_MAP['DQN']]:
# Create an identifier, which is unique for every combination and easy to read in filesystem
identifier = f'{model_cls.__name__}_{start_time}'
# Train each combination per seed
@ -154,6 +156,8 @@ if __name__ == '__main__':
env_kwargs.update(env_seed=seed)
# Output folder
seed_path = combination_path / f'{str(seed)}_{identifier}'
if (seed_path / 'monitor.pick').exists():
continue
seed_path.mkdir(parents=True, exist_ok=True)
# Monitor Init
@ -163,7 +167,7 @@ if __name__ == '__main__':
if model_cls.__name__ in ["PPO", "A2C"]:
# env_factory = env_class(**env_kwargs)
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
for _ in range(1)], start_method="spawn")
for _ in range(6)], start_method="spawn")
model_kwargs = policy_model_kwargs()
elif model_cls.__name__ in ["RegDQN", "DQN", "QRDQN"]:
@ -197,15 +201,20 @@ if __name__ == '__main__':
gc.collect()
# Compare performance runs, for each seed within a model
compare_seed_runs(combination_path)
compare_seed_runs(combination_path, use_tex=False)
# Better be save then sorry: Clean up!
del model_kwargs, env_kwargs
import gc
gc.collect()
try:
del env_kwargs
del model_kwargs
import gc
gc.collect()
except NameError:
pass
# Compare performance runs, for each model
# FIXME: Check THIS!!!!
compare_model_runs(study_root_path / observation_mode / env_name, f'{start_time}', 'step_reward')
compare_model_runs(study_root_path / observation_mode / env_name, f'{start_time}', 'step_reward',
use_tex=False)
pass
pass
pass
@ -215,7 +224,7 @@ if __name__ == '__main__':
# Evaluation starts here #####################################################
# First Iterate over every model and monitor "as trained"
baseline_monitor_file = 'e_1_baseline_monitor.pick'
if False:
if True:
render = False
for observation_mode in observation_modes:
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
@ -312,8 +321,9 @@ if __name__ == '__main__':
# Plotting
if True:
# TODO: Plotting
df_list = list()
for observation_folder in (x for x in study_root_path.iterdir() if x.is_dir()):
df_list = list()
for env_folder in (x for x in observation_folder.iterdir() if x.is_dir()):
for model_folder in (x for x in env_folder.iterdir() if x.is_dir()):
# Gather per seed results in this list
@ -334,28 +344,48 @@ if __name__ == '__main__':
monitor_df['obs_mode'] = monitor_df['obs_mode'].astype(str)
monitor_df['model'] = model_folder.name.split('_')[0]
df_list.append(monitor_df)
id_cols = ['monitor', 'env', 'obs_mode', 'model']
id_cols = ['monitor', 'env', 'obs_mode', 'model']
df = pd.concat(df_list, ignore_index=True)
df = df.fillna(0)
df = pd.concat(df_list, ignore_index=True)
df = df.fillna(0)
for id_col in id_cols:
df[id_col] = df[id_col].astype(str)
for id_col in id_cols:
df[id_col] = df[id_col].astype(str)
df_grouped = df.groupby(id_cols + ['seed']
).agg({key: 'sum' if "Agent" in key else 'mean' for key in df.columns
if key not in (id_cols + ['seed'])})
df_melted = df_grouped.reset_index().melt(id_vars=id_cols,
value_vars='step_reward', var_name="Measurement",
value_name="Score")
if True:
# df['fail_sum'] = df.loc[:, df.columns.str.contains("failed")].sum(1)
df['pick_up'] = df.loc[:, df.columns.str.contains("]_item_pickup")].sum(1)
df['drop_off'] = df.loc[:, df.columns.str.contains("]_item_dropoff")].sum(1)
df['failed_item_action'] = df.loc[:, df.columns.str.contains("]_failed_item_action")].sum(1)
df['failed_cleanup'] = df.loc[:, df.columns.str.contains("]_failed_dirt_cleanup")].sum(1)
df['coll_lvl'] = df.loc[:, df.columns.str.contains("]_vs_LEVEL")].sum(1)
df['coll_agent'] = df.loc[:, df.columns.str.contains("]_vs_Agent")].sum(1) / 2
# df['collisions'] = df['coll_lvl'] + df['coll_agent']
c = sns.catplot(data=df_melted, x='obs_mode', hue='monitor', row='model', col='env', y='Score', sharey=False,
kind="box", height=4, aspect=.7, legend_out=True)
c.set_xticklabels(rotation=65, horizontalalignment='right')
plt.tight_layout(pad=2)
plt.savefig(study_root_path / f'results_{n_agents}_agents.png')
value_vars = ['pick_up', 'drop_off', 'failed_item_action', 'failed_cleanup',
'coll_lvl', 'coll_agent', 'dirt_cleaned']
pass
df_grouped = df.groupby(id_cols + ['seed']
).agg({key: 'sum' if "Agent" in key else 'mean' for key in df.columns
if key not in (id_cols + ['seed'])})
df_melted = df_grouped.reset_index().melt(id_vars=id_cols,
value_vars=value_vars, # 'step_reward',
var_name="Measurement",
value_name="Score")
# df_melted["Measurements"] = df_melted["Measurement"] + " " + df_melted["monitor"]
# Plotting
fig, ax = plt.subplots(figsize=(11.7, 8.27))
c = sns.catplot(data=df_melted[df_melted['obs_mode'] == observation_folder.name],
x='Measurement', hue='monitor', row='model', col='env', y='Score',
sharey=False, kind="box", height=4, aspect=.7, legend_out=True,
showfliers=False)
c.set_xticklabels(rotation=65, horizontalalignment='right')
c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
c.fig.suptitle(f"Cat plot for {observation_folder.name}")
plt.tight_layout(pad=2)
plt.savefig(study_root_path / f'results_{n_agents}_agents_{observation_folder.name}.png')
pass