mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-06-18 18:52:52 +02:00
Rework of Observations and Entity Differentiation, lazy obs build by notification
This commit is contained in:
226
studies/single_run_with_export.py
Normal file
226
studies/single_run_with_export.py
Normal file
@ -0,0 +1,226 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
try:
|
||||
# noinspection PyUnboundLocalVariable
|
||||
if __package__ is None:
|
||||
DIR = Path(__file__).resolve().parent
|
||||
sys.path.insert(0, str(DIR.parent))
|
||||
__package__ = DIR.name
|
||||
else:
|
||||
DIR = None
|
||||
except NameError:
|
||||
DIR = None
|
||||
pass
|
||||
|
||||
import simplejson
|
||||
from environments.helpers import ActionTranslator, ObservationTranslator
|
||||
from environments.logging.recorder import EnvRecorder
|
||||
from environments import helpers as h
|
||||
from environments.factory.factory_dirt import DirtProperties, DirtFactory
|
||||
from environments.factory.factory_item import ItemProperties, ItemFactory
|
||||
from environments.factory.factory_dest import DestProperties, DestFactory, DestModeOptions
|
||||
from environments.factory.combined_factories import DirtDestItemFactory
|
||||
from environments.logging.envmonitor import EnvMonitor
|
||||
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
|
||||
|
||||
"""
|
||||
In this studie, we want to export trained Agents for debugging purposes.
|
||||
"""
|
||||
|
||||
|
||||
def encapsule_env_factory(env_fctry, env_kwrgs):
|
||||
|
||||
def _init():
|
||||
with env_fctry(**env_kwrgs) as init_env:
|
||||
return init_env
|
||||
|
||||
return _init
|
||||
|
||||
|
||||
def load_model_run_baseline(policy_path, env_to_run):
|
||||
# retrieve model class
|
||||
model_cls = h.MODEL_MAP['A2C']
|
||||
# Load both agents
|
||||
model = model_cls.load(policy_path / 'model.zip', device='cpu')
|
||||
# Load old env kwargs
|
||||
with next(policy_path.glob('*.json')).open('r') as f:
|
||||
env_kwargs = simplejson.load(f)
|
||||
env_kwargs.update(done_at_collision=True)
|
||||
# Init Env
|
||||
with env_to_run(**env_kwargs) as env_factory:
|
||||
monitored_env_factory = EnvMonitor(env_factory)
|
||||
recorded_env_factory = EnvRecorder(monitored_env_factory)
|
||||
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
for episode in range(5):
|
||||
env_state = recorded_env_factory.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
action = model.predict(env_state, deterministic=True)[0]
|
||||
env_state, step_r, done_bool, info_obj = recorded_env_factory.step(action)
|
||||
rew += step_r
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
recorded_env_factory.save_run(filepath=policy_path / f'monitor.pick')
|
||||
recorded_env_factory.save_records(filepath=policy_path / f'recorder.json')
|
||||
|
||||
|
||||
def load_model_run_combined(root_path, env_to_run, env_kwargs):
|
||||
# retrieve model class
|
||||
model_cls = h.MODEL_MAP['A2C']
|
||||
# Load both agents
|
||||
models = [model_cls.load(model_zip, device='cpu') for model_zip in root_path.rglob('model.zip')]
|
||||
# Load old env kwargs
|
||||
env_kwargs = env_kwargs.copy()
|
||||
env_kwargs.update(
|
||||
n_agents=len(models),
|
||||
done_at_collision=False)
|
||||
|
||||
# Init Env
|
||||
with env_to_run(**env_kwargs) as env_factory:
|
||||
|
||||
action_translator = ActionTranslator(env_factory.named_action_space,
|
||||
*[x.named_action_space for x in models])
|
||||
observation_translator = ObservationTranslator(env_factory.observation_space.shape[-2:],
|
||||
env_factory.named_observation_space,
|
||||
*[x.named_observation_space for x in models])
|
||||
|
||||
monitored_env_factory = EnvMonitor(env_factory)
|
||||
recorded_env_factory = EnvRecorder(monitored_env_factory)
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
for episode in range(5):
|
||||
env_state = recorded_env_factory.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
translated_observations = observation_translator(env_state)
|
||||
actions = [model.predict(translated_observations[model_idx], deterministic=True)[0]
|
||||
for model_idx, model in enumerate(models)]
|
||||
translated_actions = action_translator(actions)
|
||||
env_state, step_r, done_bool, info_obj = recorded_env_factory.step(translated_actions)
|
||||
rew += step_r
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
recorded_env_factory.save_run(filepath=policy_path / f'monitor.pick')
|
||||
recorded_env_factory.save_records(filepath=policy_path / f'recorder.json')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# What to do:
|
||||
train = True
|
||||
individual_run = True
|
||||
combined_run = True
|
||||
|
||||
train_steps = 2e6
|
||||
frames_to_stack = 3
|
||||
|
||||
# Define a global studi save path
|
||||
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}'
|
||||
|
||||
# Define Global Env Parameters
|
||||
# Define properties object parameters
|
||||
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
|
||||
additional_agent_placeholder=None,
|
||||
omit_agent_self=True,
|
||||
frames_to_stack=frames_to_stack,
|
||||
pomdp_r=2, cast_shadows=True)
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
dirt_props = DirtProperties(initial_dirt_ratio=0.35, initial_dirt_spawn_r_var=0.1,
|
||||
clean_amount=0.34,
|
||||
max_spawn_amount=0.1, max_global_amount=20,
|
||||
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
|
||||
dirt_smear_amount=0.0, agent_can_interact=True)
|
||||
item_props = ItemProperties(n_items=10, agent_can_interact=True,
|
||||
spawn_frequency=30, n_drop_off_locations=2,
|
||||
max_agent_inventory_capacity=15)
|
||||
dest_props = DestProperties(n_dests=4, spawn_mode=DestModeOptions.GROUPED, spawn_frequency=1)
|
||||
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
|
||||
level_name='rooms', doors_have_area=True,
|
||||
verbose=False,
|
||||
mv_prop=move_props,
|
||||
obs_prop=obs_props,
|
||||
done_at_collision=False
|
||||
)
|
||||
|
||||
# Bundle both environments with global kwargs and parameters
|
||||
env_map = {}
|
||||
env_map.update({'dirt': (DirtFactory, dict(dirt_prop=dirt_props,
|
||||
**factory_kwargs.copy()))})
|
||||
env_map.update({'item': (ItemFactory, dict(item_prop=item_props,
|
||||
**factory_kwargs.copy()))})
|
||||
env_map.update({'dest': (DestFactory, dict(dest_prop=dest_props,
|
||||
**factory_kwargs.copy()))})
|
||||
env_map.update({'combined': (DirtDestItemFactory, dict(dest_prop=dest_props,
|
||||
item_prop=item_props,
|
||||
dirt_prop=dirt_props,
|
||||
**factory_kwargs.copy()))})
|
||||
env_names = list(env_map.keys())
|
||||
|
||||
# Train starts here ############################################################
|
||||
# Build Major Loop parameters, parameter versions, Env Classes and models
|
||||
if train:
|
||||
for env_key in (env_key for env_key in env_map if 'combined' != env_key):
|
||||
model_cls = h.MODEL_MAP['A2C']
|
||||
combination_path = study_root_path / env_key
|
||||
env_class, env_kwargs = env_map[env_key]
|
||||
|
||||
# Output folder
|
||||
if (combination_path / 'monitor.pick').exists():
|
||||
continue
|
||||
combination_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with env_class(**env_kwargs) as env_factory:
|
||||
param_path = combination_path / f'env_params.json'
|
||||
env_factory.save_params(param_path)
|
||||
|
||||
# EnvMonitor Init
|
||||
callbacks = [EnvMonitor(env_factory)]
|
||||
|
||||
# Model Init
|
||||
model = model_cls("MlpPolicy", env_factory,
|
||||
verbose=1, seed=69, device='cpu')
|
||||
|
||||
# Model train
|
||||
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
||||
|
||||
# Model save
|
||||
model.named_action_space = env_factory.unwrapped.named_action_space
|
||||
model.named_observation_space = env_factory.unwrapped.named_observation_space
|
||||
save_path = combination_path / f'model.zip'
|
||||
model.save(save_path)
|
||||
|
||||
# Monitor Save
|
||||
callbacks[0].save_run(combination_path / 'monitor.pick')
|
||||
|
||||
# Better be save then sorry: Clean up!
|
||||
del env_factory, model
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
# Train ends here ############################################################
|
||||
|
||||
# Evaluation starts here #####################################################
|
||||
# First Iterate over every model and monitor "as trained"
|
||||
if individual_run:
|
||||
print('Start Individual Recording')
|
||||
for env_key in (env_key for env_key in env_map if 'combined' != env_key):
|
||||
# For trained policy in study_root_path / identifier
|
||||
policy_path = study_root_path / env_key
|
||||
load_model_run_baseline(policy_path, env_map[policy_path.name][0])
|
||||
|
||||
# for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
||||
# load_model_run_baseline(policy_path)
|
||||
print('Start Individual Training')
|
||||
|
||||
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
|
||||
if combined_run:
|
||||
print('Start combined run')
|
||||
for env_key in (env_key for env_key in env_map if 'combined' == env_key):
|
||||
# For trained policy in study_root_path / identifier
|
||||
factory, kwargs = env_map[env_key]
|
||||
load_model_run_combined(study_root_path, factory, kwargs)
|
||||
print('OOD Tracking Done')
|
Reference in New Issue
Block a user