Monitor and Recorder are Wrappers.

This commit is contained in:
Steffen Illium
2021-11-24 17:39:26 +01:00
parent 59484f49c9
commit b0d6c2e1ef
10 changed files with 241 additions and 350 deletions

View File

@ -18,7 +18,6 @@ except NameError:
import time
import simplejson
from stable_baselines3.common.vec_env import SubprocVecEnv
@ -26,13 +25,17 @@ from environments import helpers as h
from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.factory.combined_factories import DirtItemFactory
from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.logging.monitor import MonitorCallback
from environments.logging.envmonitor import EnvMonitor
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
import pickle
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
import pandas as pd
import seaborn as sns
import multiprocessing as mp
# mp.set_start_method("spawn")
"""
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
but never saw each other in training.
@ -69,9 +72,10 @@ n_agents = 4
ood_monitor_file = f'e_1_{n_agents}_agents'
baseline_monitor_file = 'e_1_baseline'
from stable_baselines3 import A2C
def policy_model_kwargs():
return dict()
return dict(gae_lambda=0.25, n_steps=16, max_grad_norm=0, use_rms_prop=False)
def dqn_model_kwargs():
@ -102,27 +106,23 @@ def load_model_run_baseline(seed_path, env_to_run):
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(done_at_collision=True)
# Monitor Init
with MonitorCallback(filepath=seed_path / f'{baseline_monitor_file}.pick') as monitor:
# Init Env
with env_to_run(**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(100):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = env_factory.step(action)
monitor.read_info(0, info_obj)
rew += step_r
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
# del model, env_kwargs, env_factory
# import gc
# gc.collect()
# Init Env
with env_to_run(**env_kwargs) as env_factory:
monitored_env_factory = EnvMonitor(env_factory)
# Evaluation Loop for i in range(n Episodes)
for episode in range(100):
env_state = monitored_env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = monitored_env_factory.step(action)
rew += step_r
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
monitored_env_factory.save_run(filepath=seed_path / f'{ood_monitor_file}.pick')
def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
@ -138,33 +138,31 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
n_agents=n_agents,
done_at_collision=True,
**additional_kwargs_dict.get('post_training_kwargs', {}))
# Monitor Init
with MonitorCallback(filepath=seed_path / f'{ood_monitor_file}.pick') as monitor:
# Init Env
with env_to_run(**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
try:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=True)[0] for j, model in enumerate(models)]
except ValueError as e:
print(e)
print('Env_Kwargs are:\n')
print(env_kwargs)
print('Path is:\n')
print(seed_path)
exit()
env_state, step_r, done_bool, info_obj = env_factory.step(actions)
monitor.read_info(0, info_obj)
rew += step_r
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Init Env
with env_to_run(**env_kwargs) as env_factory:
monitored_factory_env = EnvMonitor(env_factory)
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
env_state = monitored_factory_env.reset()
rew, done_bool = 0, False
while not done_bool:
try:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=True)[0] for j, model in enumerate(models)]
except ValueError as e:
print(e)
print('Env_Kwargs are:\n')
print(env_kwargs)
print('Path is:\n')
print(seed_path)
exit()
env_state, step_r, done_bool, info_obj = monitored_factory_env.step(actions)
rew += step_r
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
monitored_factory_env.save_run(filepath=seed_path / f'{ood_monitor_file}.pick')
# Eval monitor outputs are automatically stored by the monitor object
del models, env_kwargs, env_factory
import gc
@ -174,27 +172,25 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
def start_mp_study_run(envs_map, policies_path):
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / f'{ood_monitor_file}.pick').exists())
if paths:
import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_study,
it.product(paths,
(envs_map[policies_path.parent.name][0],),
(observation_modes[policies_path.parent.parent.name],))
)
with mp.get_context("spawn").Pool(mp.cpu_count()) as pool:
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_study,
it.product(paths,
(envs_map[policies_path.parent.name][0],),
(observation_modes[policies_path.parent.parent.name],))
)
def start_mp_baseline_run(envs_map, policies_path):
paths = list(y for y in policies_path.iterdir() if y.is_dir() and
not (y / f'{baseline_monitor_file}.pick').exists())
if paths:
import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_baseline,
it.product(paths,
(envs_map[policies_path.parent.name][0],))
)
with mp.get_context("spawn").Pool(mp.cpu_count()) as pool:
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_baseline,
it.product(paths,
(envs_map[policies_path.parent.name][0],))
)
if __name__ == '__main__':
@ -206,9 +202,10 @@ if __name__ == '__main__':
train_steps = 5e6
n_seeds = 3
frames_to_stack = 3
# Define a global studi save path
start_time = 'exploring_obs_stack' # int(time.time())
start_time = 'obs_stack_3_gae_0.25_n_steps_16' # int(time.time())
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
# Define Global Env Parameters
@ -216,7 +213,7 @@ if __name__ == '__main__':
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
omit_agent_self=True,
additional_agent_placeholder=None,
frames_to_stack=6,
frames_to_stack=frames_to_stack,
pomdp_r=2
)
move_props = MovementProperties(allow_diagonal_movement=True,
@ -234,7 +231,8 @@ if __name__ == '__main__':
level_name='rooms', record_episodes=False, doors_have_area=True,
verbose=False,
mv_prop=move_props,
obs_prop=obs_props
obs_prop=obs_props,
done_at_collision=True
)
# Bundle both environments with global kwargs and parameters
@ -250,44 +248,45 @@ if __name__ == '__main__':
# Define parameter versions according with #1,2[1,0,N],3
observation_modes = {}
observation_modes.update({
'seperate_1': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=1,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_0': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=0,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
if False:
observation_modes.update({
'seperate_1': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=1,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_0': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=0,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_N': dict(
post_training_kwargs=
@ -295,7 +294,7 @@ if __name__ == '__main__':
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
frames_to_stack=frames_to_stack,
pomdp_r=2)
),
additional_env_kwargs=
@ -303,7 +302,7 @@ if __name__ == '__main__':
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder='N',
omit_agent_self=True,
frames_to_stack=3,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)})
@ -314,7 +313,7 @@ if __name__ == '__main__':
render_agents=AgentRenderOptions.LEVEL,
omit_agent_self=True,
additional_agent_placeholder=None,
frames_to_stack=3,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)})
@ -326,7 +325,7 @@ if __name__ == '__main__':
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)
@ -355,9 +354,6 @@ if __name__ == '__main__':
continue
seed_path.mkdir(parents=True, exist_ok=True)
# Monitor Init
callbacks = [MonitorCallback(seed_path / 'monitor.pick')]
# Env Init & Model kwargs definition
if model_cls.__name__ in ["PPO", "A2C"]:
# env_factory = env_class(**env_kwargs)
@ -378,6 +374,9 @@ if __name__ == '__main__':
except AttributeError:
env_factory.save_params(param_path)
# EnvMonitor Init
callbacks = [EnvMonitor(env_factory)]
# Model Init
model = model_cls("MlpPolicy", env_factory,
verbose=1, seed=seed, device='cpu',
@ -390,6 +389,9 @@ if __name__ == '__main__':
save_path = seed_path / f'model.zip'
model.save(save_path)
# Monitor Save
callbacks[0].save_run(seed_path / 'monitor.pick')
# Better be save then sorry: Clean up!
del env_factory, model
import gc
@ -500,13 +502,14 @@ if __name__ == '__main__':
df['failed_cleanup'] = df.loc[:, df.columns.str.contains("]_failed_dirt_cleanup")].sum(1)
df['coll_lvl'] = df.loc[:, df.columns.str.contains("]_vs_LEVEL")].sum(1)
df['coll_agent'] = df.loc[:, df.columns.str.contains("]_vs_Agent")].sum(1) / 2
# df['collisions'] = df['coll_lvl'] + df['coll_agent']
# df['`collis`ions'] = df['coll_lvl'] + df['coll_agent']
value_vars = ['pick_up', 'drop_off', 'failed_item_action', 'failed_cleanup',
'coll_lvl', 'coll_agent', 'dirt_cleaned']
df_grouped = df.groupby(id_cols + ['seed']
).agg({key: 'sum' if "Agent" in key else 'mean' for key in df.columns
# 'sum' if "agent" in key else 'mean'
).agg({key: 'sum' for key in df.columns
if key not in (id_cols + ['seed'])})
df_melted = df_grouped.reset_index().melt(id_vars=id_cols,
value_vars=value_vars, # 'step_reward',