mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-12-12 10:30:37 +01:00
Monitor and Recorder are Wrappers.
This commit is contained in:
@@ -8,7 +8,7 @@ from environments import helpers as h
|
||||
from environments.helpers import Constants as c
|
||||
from environments.factory.factory_dirt import DirtFactory
|
||||
from environments.factory.combined_factories import DirtItemFactory
|
||||
from environments.logging.recorder import RecorderCallback
|
||||
from environments.logging.recorder import EnvRecorder
|
||||
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
@@ -16,14 +16,13 @@ warnings.filterwarnings('ignore', category=UserWarning)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
model_name = 'A2C_ItsDirt'
|
||||
run_id = 0
|
||||
determin = True
|
||||
render=False
|
||||
determin = False
|
||||
render = True
|
||||
record = True
|
||||
seed = 67
|
||||
n_agents = 1
|
||||
out_path = Path('study_out/e_1_Now_with_doors/no_obs/dirt/A2C_Now_with_doors/0_A2C_Now_with_doors')
|
||||
n_agents = 2
|
||||
out_path = Path('study_out/e_1_obs_stack_3_gae_0.25_n_steps_16/seperate_N/dirt/A2C_obs_stack_3_gae_0.25_n_steps_16/0_A2C_obs_stack_3_gae_0.25_n_steps_16')
|
||||
out_path_2 = Path('study_out/e_1_obs_stack_3_gae_0.25_n_steps_16/seperate_N/dirt/A2C_obs_stack_3_gae_0.25_n_steps_16/1_A2C_obs_stack_3_gae_0.25_n_steps_16')
|
||||
model_path = out_path
|
||||
|
||||
with (out_path / f'env_params.json').open('r') as f:
|
||||
@@ -33,42 +32,35 @@ if __name__ == '__main__':
|
||||
env_kwargs['dirt_prop']['max_spawn_amount'] = gain_amount
|
||||
del env_kwargs['dirt_prop']['gain_amount']
|
||||
|
||||
env_kwargs.update(record_episodes=record)
|
||||
env_kwargs.update(record_episodes=record, done_at_collision=True)
|
||||
|
||||
this_model = out_path / 'model.zip'
|
||||
other_model = out_path / 'model.zip'
|
||||
|
||||
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in model_name)
|
||||
models = [model_cls.load(this_model) for _ in range(n_agents)]
|
||||
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in out_path.parent.name)
|
||||
models = [model_cls.load(this_model), model_cls.load(other_model)]
|
||||
|
||||
with RecorderCallback(filepath=Path() / 'recorder_out_DQN.json', occupation_map=True,
|
||||
entities=['Agents']) as recorder:
|
||||
# Init Env
|
||||
with DirtFactory(**env_kwargs) as env:
|
||||
obs_shape = env.observation_space.shape
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
recorder.read_params(env.params)
|
||||
for episode in range(200):
|
||||
env_state = env.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
if n_agents > 1:
|
||||
actions = [model.predict(
|
||||
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
|
||||
deterministic=determin)[0] for j, model in enumerate(models)]
|
||||
else:
|
||||
actions = models[0].predict(env_state, deterministic=determin)[0]
|
||||
if False:
|
||||
if any([agent.pos in [door.pos for door in env.unwrapped[c.DOORS]]
|
||||
for agent in env.unwrapped[c.AGENT]]):
|
||||
print('On Door')
|
||||
env_state, step_r, done_bool, info_obj = env.step(actions)
|
||||
# Init Env
|
||||
with DirtFactory(**env_kwargs) as env:
|
||||
env = EnvRecorder(env)
|
||||
obs_shape = env.observation_space.shape
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
for episode in range(50):
|
||||
env_state = env.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
if n_agents > 1:
|
||||
actions = [model.predict(
|
||||
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
|
||||
deterministic=determin)[0] for j, model in enumerate(models)]
|
||||
else:
|
||||
actions = models[0].predict(env_state, deterministic=determin)[0]
|
||||
env_state, step_r, done_bool, info_obj = env.step(actions)
|
||||
|
||||
recorder.read_info(0, info_obj)
|
||||
rew += step_r
|
||||
if render:
|
||||
env.render()
|
||||
if done_bool:
|
||||
recorder.read_done(0, done_bool)
|
||||
break
|
||||
rew += step_r
|
||||
if render:
|
||||
env.render()
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
print('all done')
|
||||
|
||||
Reference in New Issue
Block a user