added first working MAPPO implementation

This commit is contained in:
Robert Müller
2022-01-28 11:07:25 +01:00
parent ffc47752a7
commit b09c461754
11 changed files with 194 additions and 61 deletions

View File

@ -1,14 +1,13 @@
from algorithms.utils import Checkpointer
from pathlib import Path
from algorithms.utils import load_yaml_file, add_env_props, instantiate_class, load_class
from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC
#from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC
#study_root = Path(__file__).parent / 'curious_study'
study_root = Path('/Users/romue/PycharmProjects/EDYS/algorithms/marl')
for i in range(0, 5):
for name in ['example_config']:
for name in ['mappo']:#['seac', 'iac', 'snac']:
study_root = Path(__file__).parent / name
cfg = load_yaml_file(study_root / f'{name}.yaml')
add_env_props(cfg)
@ -17,7 +16,7 @@ for i in range(0, 5):
max_steps = cfg['algorithm']['max_steps']
n_steps = cfg['algorithm']['n_steps']
checkpointer = Checkpointer(f'{name}#{i}', study_root, cfg, max_steps, 250)
checkpointer = Checkpointer(f'{name}#{i}', study_root, cfg, max_steps, 50)
loop = load_class(cfg['method'])(cfg)
df = loop.train_loop(checkpointer)

View File

@ -1,32 +1,22 @@
import numpy as np
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
study_root = Path(__file__).parent / 'entropy_study'
names_all = ['basic_gru', 'layernorm_gru', 'spectralnorm_gru', 'nonorm_gru']
names_only_1 = ['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru', 'basic_gru']
names_only_2 = ['L2NoCh_gru', 'L2NoAh_gru', 'nomix_gru', 'basic_gru']
names = names_only_2
#names = ['nonorm_gru']
# /Users/romue/PycharmProjects/EDYS/studies/normalization_study/basic_gru#3
csvs = []
for name in ['basic_gru', 'nonorm_gru', 'spectralnorm_gru']:
for run in range(0, 1):
dfs = []
for name in ['l2snac', 'iac', 'snac', 'seac']:
for c in range(5):
try:
df = pd.read_csv(study_root / f'{name}#{run}' / 'results.csv')
df = df[df.agent == 'sum']
df = df.groupby(['checkpoint', 'run']).mean().reset_index()
df['method'] = name
df['run_'] = run
df.reward = df.reward.rolling(15).mean()
csvs.append(df)
study_root = Path(__file__).parent / name / f'{name}#{c}'
df = pd.read_csv(study_root / 'results.csv', index_col=False)
df.reward = df.reward.rolling(100).mean()
df['method'] = name.upper()
dfs.append(df)
except Exception as e:
print(f'skipped {run}\t {name}')
pass
csvs = pd.concat(csvs).rename(columns={"checkpoint": "steps*2e3", "B": "c"})
sns.lineplot(data=csvs, x='steps*2e3', y='reward', hue='method', palette='husl', ci='sd', linewidth=1.8)
plt.savefig('entropy.png')
df = pd.concat(dfs).reset_index()
sns.lineplot(data=df, x='episode', y='reward', hue='method', palette='husl', ci='sd', linewidth=1.5)
plt.savefig('study.png')
print('saved image')

View File

@ -3,19 +3,21 @@ from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC
from pathlib import Path
from algorithms.utils import load_yaml_file
from tqdm import trange
study = 'curious_study'
study_root = Path(__file__).parent / study
study = 'example_config#0'
#study_root = Path(__file__).parent / study
study_root = Path('/Users/romue/PycharmProjects/EDYS/algorithms/marl/')
#['L2NoAh_gru', 'L2NoCh_gru', 'nomix_gru']:
render = True
eval_eps = 3
for run in range(0, 5):
for name in ['basic_gru']:#['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru']: #['layernorm_gru', 'basic_gru', 'nonorm_gru', 'spectralnorm_gru']:
cfg = load_yaml_file(Path(__file__).parent / study / f'{name}.yaml')
p_root = Path(study_root / f'{name}#{run}')
for name in ['example_config']:#['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru']: #['layernorm_gru', 'basic_gru', 'nonorm_gru', 'spectralnorm_gru']:
cfg = load_yaml_file(study_root / study / 'config.yaml')
#p_root = Path(study_root / study / f'{name}#{run}')
dfs = []
for i in trange(500):
path = p_root / f'checkpoint_{i}'
path = study_root / study / f'checkpoint_{161}'
print(path)
snac = LoopSEAC(cfg)
snac.load_state_dict(path)