mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-06-18 18:52:52 +02:00
init and __init__
This commit is contained in:
189
_quickstart/combine_and_monitor_rerun.py
Normal file
189
_quickstart/combine_and_monitor_rerun.py
Normal file
@ -0,0 +1,189 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
##############################################
|
||||
# keep this for stand alone script execution #
|
||||
##############################################
|
||||
from environments.factory.base.base_factory import BaseFactory
|
||||
from environments.logging.recorder import EnvRecorder
|
||||
|
||||
try:
|
||||
# noinspection PyUnboundLocalVariable
|
||||
if __package__ is None:
|
||||
DIR = Path(__file__).resolve().parent
|
||||
sys.path.insert(0, str(DIR.parent))
|
||||
__package__ = DIR.name
|
||||
else:
|
||||
DIR = None
|
||||
except NameError:
|
||||
DIR = None
|
||||
pass
|
||||
##############################################
|
||||
##############################################
|
||||
##############################################
|
||||
|
||||
|
||||
import simplejson
|
||||
|
||||
from environments import helpers as h
|
||||
from environments.factory.additional.combined_factories import DestBatteryFactory
|
||||
from environments.factory.additional.dest.factory_dest import DestFactory
|
||||
from environments.factory.additional.dirt.factory_dirt import DirtFactory
|
||||
from environments.factory.additional.item.factory_item import ItemFactory
|
||||
from environments.helpers import ObservationTranslator, ActionTranslator
|
||||
from environments.logging.envmonitor import EnvMonitor
|
||||
from environments.utility_classes import ObservationProperties, AgentRenderOptions, MovementProperties
|
||||
|
||||
|
||||
def policy_model_kwargs():
|
||||
return dict(ent_coef=0.01)
|
||||
|
||||
|
||||
def dqn_model_kwargs():
|
||||
return dict(buffer_size=50000,
|
||||
learning_starts=64,
|
||||
batch_size=64,
|
||||
target_update_interval=5000,
|
||||
exploration_fraction=0.25,
|
||||
exploration_final_eps=0.025
|
||||
)
|
||||
|
||||
|
||||
def encapsule_env_factory(env_fctry, env_kwrgs):
|
||||
|
||||
def _init():
|
||||
with env_fctry(**env_kwrgs) as init_env:
|
||||
return init_env
|
||||
|
||||
return _init
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
render = False
|
||||
# Define Global Env Parameters
|
||||
# Define properties object parameters
|
||||
factory_kwargs = dict(
|
||||
max_steps=400, parse_doors=True,
|
||||
level_name='rooms',
|
||||
doors_have_area=True, verbose=False,
|
||||
mv_prop=MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False),
|
||||
obs_prop=ObservationProperties(
|
||||
frames_to_stack=3,
|
||||
cast_shadows=True,
|
||||
omit_agent_self=True,
|
||||
render_agents=AgentRenderOptions.LEVEL,
|
||||
additional_agent_placeholder=None,
|
||||
)
|
||||
)
|
||||
|
||||
# Bundle both environments with global kwargs and parameters
|
||||
# Todo: find a better solution, like outo module loading
|
||||
env_map = {'DirtFactory': DirtFactory,
|
||||
'ItemFactory': ItemFactory,
|
||||
'DestFactory': DestFactory,
|
||||
'DestBatteryFactory': DestBatteryFactory
|
||||
}
|
||||
env_names = list(env_map.keys())
|
||||
|
||||
# Put all your multi-seed agends in a single folder, we do not need specific names etc.
|
||||
available_models = dict()
|
||||
available_envs = dict()
|
||||
available_runs_kwargs = dict()
|
||||
available_runs_agents = dict()
|
||||
max_seed = 0
|
||||
# Define this folder
|
||||
combinations_path = Path('combinations')
|
||||
# Those are all differently trained combinations of mdoels, environment and parameters
|
||||
for combination in (x for x in combinations_path.iterdir() if x.is_dir()):
|
||||
# These are all the models for this specific combination
|
||||
for model_run in (x for x in combination.iterdir() if x.is_dir()):
|
||||
model_name, env_name = model_run.name.split('_')[:2]
|
||||
if model_name not in available_models:
|
||||
available_models[model_name] = h.MODEL_MAP[model_name]
|
||||
if env_name not in available_envs:
|
||||
available_envs[env_name] = env_map[env_name]
|
||||
# Those are all available seeds
|
||||
for seed_run in (x for x in model_run.iterdir() if x.is_dir()):
|
||||
max_seed = max(int(seed_run.name.split('_')[0]), max_seed)
|
||||
# Read the environment configuration from ROM
|
||||
with next(seed_run.glob('env_params.json')).open('r') as f:
|
||||
env_kwargs = simplejson.load(f)
|
||||
available_runs_kwargs[seed_run.name] = env_kwargs
|
||||
# Read the trained model_path from ROM
|
||||
model_path = next(seed_run.glob('model.zip'))
|
||||
available_runs_agents[seed_run.name] = model_path
|
||||
|
||||
# We start by combining all SAME MODEL CLASSES per available Seed, across ALL available ENVIRONMENTS.
|
||||
for model_name, model_cls in available_models.items():
|
||||
for seed in range(max_seed):
|
||||
combined_env_kwargs = dict()
|
||||
model_paths = list()
|
||||
comparable_runs = {key: val for key, val in available_runs_kwargs.items() if (
|
||||
key.startswith(str(seed)) and model_name in key and key != 'key')
|
||||
}
|
||||
for name, run_kwargs in comparable_runs.items():
|
||||
# Select trained agent as a candidate:
|
||||
model_paths.append(available_runs_agents[name])
|
||||
# Sort Env Kwars:
|
||||
for key, val in run_kwargs.items():
|
||||
if key not in combined_env_kwargs:
|
||||
combined_env_kwargs.update(dict(key=val))
|
||||
else:
|
||||
assert combined_env_kwargs[key] == val, "Check the combinations you try to make!"
|
||||
|
||||
# Update and combine all kwargs to account for multiple agent etc.
|
||||
# We cannot capture all configuration cases!
|
||||
for key, val in factory_kwargs.items():
|
||||
if key not in combined_env_kwargs:
|
||||
combined_env_kwargs[key] = val
|
||||
else:
|
||||
assert combined_env_kwargs[key] == val
|
||||
del combined_env_kwargs['key']
|
||||
combined_env_kwargs.update(n_agents=len(comparable_runs))
|
||||
with type("CombinedEnv", tuple(available_envs.values()), {})(**combined_env_kwargs) as combEnv:
|
||||
# EnvMonitor Init
|
||||
comb = f'comb_{model_name}_{seed}'
|
||||
comb_monitor_path = combinations_path / comb / f'{comb}_monitor.pick'
|
||||
comb_recorder_path = combinations_path / comb / f'{comb}_recorder.json'
|
||||
comb_monitor_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
monitoredCombEnv = EnvMonitor(combEnv, filepath=comb_monitor_path)
|
||||
monitoredCombEnv = EnvRecorder(monitoredCombEnv, filepath=comb_recorder_path, freq=1)
|
||||
|
||||
# Evaluation starts here #####################################################
|
||||
# Load all models
|
||||
loaded_models = [available_models[model_name].load(model_path) for model_path in model_paths]
|
||||
obs_translators = ObservationTranslator(
|
||||
monitoredCombEnv.named_observation_space,
|
||||
*[agent.named_observation_space for agent in loaded_models],
|
||||
placeholder_fill_value='n')
|
||||
act_translators = ActionTranslator(
|
||||
monitoredCombEnv.named_action_space,
|
||||
*(agent.named_action_space for agent in loaded_models)
|
||||
)
|
||||
|
||||
for episode in range(1):
|
||||
obs = monitoredCombEnv.reset()
|
||||
if render: monitoredCombEnv.render()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
actions = []
|
||||
for i, model in enumerate(loaded_models):
|
||||
pred = model.predict(obs_translators.translate_observation(i, obs[i]))[0]
|
||||
actions.append(act_translators.translate_action(i, pred))
|
||||
|
||||
obs, step_r, done_bool, info_obj = monitoredCombEnv.step(actions)
|
||||
|
||||
rew += step_r
|
||||
if render: monitoredCombEnv.render()
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
# Eval monitor outputs are automatically stored by the monitor object
|
||||
# TODO: Plotting
|
||||
monitoredCombEnv.save_records()
|
||||
monitoredCombEnv.save_run()
|
||||
pass
|
Reference in New Issue
Block a user