mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	cleanup algos + adjusted renderer to support "ray casting"
This commit is contained in:
		
							
								
								
									
										40
									
								
								algorithms/awr_learner.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								algorithms/awr_learner.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,40 @@ | ||||
| from common import BaseLearner, TrajectoryBuffer | ||||
|  | ||||
|  | ||||
| class AWRLearner(BaseLearner): | ||||
|     def __init__(self, *args,  buffer_size=1e5, **kwargs): | ||||
|         super(AWRLearner, self).__init__(*args, **kwargs) | ||||
|         assert self.train_every[0] == 'episode', 'AWR only supports the episodic RL setting!' | ||||
|         self.buffer = TrajectoryBuffer(buffer_size) | ||||
|  | ||||
|     def train(self): | ||||
|         # convert to trajectory format | ||||
|         pass | ||||
|  | ||||
| import numpy as np | ||||
| from matplotlib import pyplot as plt | ||||
| import pandas as pd | ||||
| import seaborn as sns | ||||
|  | ||||
| sns.set(font_scale=1.25, rc={'text.usetex': True}) | ||||
| data = np.array([[689, 74], [71, 647]]) | ||||
| cats = ['Mask', 'No Mask'] | ||||
| df = pd.DataFrame(data/np.sum(data), index=cats, columns=cats) | ||||
|  | ||||
| group_counts = ['{0:0.0f}'.format(value) for value in | ||||
|                 data.flatten()] | ||||
| group_percentages = [f'{value*100:.2f}' + r'$\%$' for value in | ||||
|                      data.flatten()/np.sum(data)] | ||||
|  | ||||
| labels = [f'{v1}\n{v2}' for v1, v2 in | ||||
|           zip(group_counts,group_percentages)] | ||||
| labels = np.asarray(labels).reshape(2,2) | ||||
|  | ||||
| with sns.axes_style("white"): | ||||
|     cmap = sns.diverging_palette(h_neg=100, h_pos=10, s=99, l=55, sep=3, as_cmap=True) | ||||
|     sns.heatmap(data, annot=labels, fmt='', cmap='Set2_r', square=True, cbar=False, xticklabels=cats,yticklabels=cats) | ||||
| plt.title('Simple-CNN') | ||||
| plt.ylabel('True label') | ||||
| plt.xlabel('Predicted label') | ||||
| plt.tight_layout() | ||||
| plt.savefig('cnn.pdf', bbox_inches='tight') | ||||
| @@ -1,5 +1,5 @@ | ||||
| from typing import NamedTuple, Union | ||||
| from collections import deque, OrderedDict | ||||
| from collections import deque, OrderedDict, defaultdict | ||||
| import numpy as np | ||||
| import random | ||||
| import torch | ||||
| @@ -18,12 +18,13 @@ class Experience(NamedTuple): | ||||
|  | ||||
|  | ||||
| class BaseLearner: | ||||
|     def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1): | ||||
|     def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1, stack_n_frames=1): | ||||
|         assert train_every[0] in ['step', 'episode'], 'train_every[0] must be one of ["step", "episode"]' | ||||
|         self.env = env | ||||
|         self.n_agents = n_agents | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.train_every = train_every | ||||
|         self.stack_n_frames = deque(stack_n_frames) | ||||
|         self.device = 'cpu' | ||||
|         self.n_updates = 0 | ||||
|         self.step = 0 | ||||
| @@ -102,8 +103,8 @@ class BaseBuffer: | ||||
|     def __len__(self): | ||||
|         return len(self.experience) | ||||
|  | ||||
|     def add(self, experience): | ||||
|         self.experience.append(experience) | ||||
|     def add(self, exp: Experience): | ||||
|         self.experience.append(exp) | ||||
|  | ||||
|     def sample(self, k, cer=4): | ||||
|         sample = random.choices(self.experience, k=k-cer) | ||||
| @@ -113,9 +114,22 @@ class BaseBuffer: | ||||
|         actions = torch.tensor([e.action for e in sample]).long() | ||||
|         rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1) | ||||
|         dones = torch.tensor([e.done for e in sample]).float().view(-1, 1) | ||||
|         #print(observations.shape, next_observations.shape, actions.shape, rewards.shape, dones.shape) | ||||
|         return Experience(observations, next_observations, actions, rewards, dones) | ||||
|  | ||||
|  | ||||
| class TrajectoryBuffer(BaseBuffer): | ||||
|     def __init__(self, size): | ||||
|         super(TrajectoryBuffer, self).__init__(size) | ||||
|         self.experience = defaultdict(list) | ||||
|  | ||||
|     def add(self, exp: Experience): | ||||
|         self.experience[exp.episode].append(exp) | ||||
|         if len(self.experience) > self.size: | ||||
|             oldest_traj_key = list(sorted(self.experience.keys()))[0] | ||||
|             del self.experience[oldest_traj_key] | ||||
|  | ||||
|  | ||||
| def soft_update(local_model, target_model, tau): | ||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||
| @@ -152,9 +166,10 @@ class BaseDDQN(BaseDQN): | ||||
|     def __init__(self, | ||||
|                  backbone_dims=[3*5*5, 64, 64], | ||||
|                  value_dims=[64, 1], | ||||
|                  advantage_dims=[64, 9]): | ||||
|                  advantage_dims=[64, 9], | ||||
|                  activation='elu'): | ||||
|         super(BaseDDQN, self).__init__(backbone_dims) | ||||
|         self.net = mlp_maker(backbone_dims, flatten=True) | ||||
|         self.net = mlp_maker(backbone_dims, activation=activation, flatten=True) | ||||
|         self.value_head         =  mlp_maker(value_dims) | ||||
|         self.advantage_head     =  mlp_maker(advantage_dims) | ||||
|  | ||||
|   | ||||
| @@ -25,7 +25,7 @@ class MQLearner(QLearner): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1]) | ||||
|  | ||||
|             with torch.no_grad(): | ||||
|                 q_target_next = self.target_q_net(experience.next_observation) | ||||
|   | ||||
| @@ -17,7 +17,7 @@ class QLearner(BaseLearner): | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.target_q_net.eval() | ||||
|         soft_update(self.q_net, self.target_q_net, tau=1.0) | ||||
|         #soft_update(self.q_net, self.target_q_net, tau=1.0) | ||||
|         self.buffer = BaseBuffer(buffer_size) | ||||
|         self.target_update = target_update | ||||
|         self.eps = eps_start | ||||
| @@ -30,9 +30,7 @@ class QLearner(BaseLearner): | ||||
|         self.reg_weight = reg_weight | ||||
|         self.weight_decay = weight_decay | ||||
|         self.lr = lr | ||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), | ||||
|                                            lr=self.lr, | ||||
|                                            weight_decay=self.weight_decay) | ||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr, weight_decay=self.weight_decay) | ||||
|         self.max_grad_norm = max_grad_norm | ||||
|         self.running_reward = deque(maxlen=5) | ||||
|         self.running_loss = deque(maxlen=5) | ||||
| @@ -103,20 +101,31 @@ class QLearner(BaseLearner): | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     from algorithms.common import BaseDDQN | ||||
|     from algorithms.m_q_learner import MQLearner | ||||
|     from algorithms.vdn_learner import VDNLearner | ||||
|     from algorithms.udr_learner import UDRLearner | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
|     dirt_props = DirtProperties(clean_amount=1, gain_amount=0.1, max_global_amount=20, | ||||
|                                 max_local_amount=1, spawn_frequency=5, max_spawn_ratio=0.05, | ||||
|                                 dirt_smear_amount=0.0) | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
|  | ||||
|     dqn, target_dqn = BaseDDQN(), BaseDDQN() | ||||
|     learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                        train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     env = SimpleFactory(n_agents=1, dirt_properties=dirt_props, pomdp_radius=2, max_steps=400, parse_doors=False, | ||||
|                         movement_properties=move_props, level_name='rooms', frames_to_stack=0, | ||||
|                         omit_agent_slice_in_obs=True, combin_agent_slices_in_obs=True, record_episodes=False | ||||
|                     ) | ||||
|  | ||||
|     obs_shape = np.prod(env.observation_space.shape) | ||||
|     n_actions = env.action_space.n | ||||
|  | ||||
|     dqn, target_dqn = BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128,1], activation='leaky_relu'),\ | ||||
|                       BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128,1], activation='leaky_relu') | ||||
|  | ||||
|     learner = MQLearner(dqn, target_dqn, env, 50000, target_update=5000, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                         train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64, weight_decay=1e-3) | ||||
|     #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') | ||||
|     learner.learn(100000) | ||||
|   | ||||
| @@ -1,48 +0,0 @@ | ||||
| import torch | ||||
| from algorithms.q_learner import QLearner | ||||
|  | ||||
|  | ||||
| class QTRANLearner(QLearner): | ||||
|     def __init__(self, *args, weight_opt=1., weigt_nopt=1., **kwargs): | ||||
|         super(QTRANLearner, self).__init__(*args, **kwargs) | ||||
|         assert self.n_agents >= 2, 'QTRANLearner requires more than one agent, use QLearner instead' | ||||
|         self.weight_opt = weight_opt | ||||
|         self.weigt_nopt = weigt_nopt | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         # todo remove - is inherited - only used while implementing qtran | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|     def local_qs(self, observations, actions): | ||||
|         Q_jt = torch.zeros_like(actions)  # placeholder to sum up individual q values | ||||
|         features = [] | ||||
|         for agent_i in range(self.n_agents): | ||||
|             q_values_agent_i, features_agent_i = self.q_net(observations[:, agent_i])  # Individual action-value network | ||||
|             q_values_agent_i = torch.gather(q_values_agent_i, dim=-1, index=actions[:, agent_i].unsqueeze(-1)) | ||||
|             Q_jt += q_values_agent_i | ||||
|             features.append(features_agent_i) | ||||
|         feature_sum = torch.stack(features, 0).sum(0)  # (n_agents x hdim) -> hdim | ||||
|         return Q_jt | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|  | ||||
|             Q_jt_prime = self.local_qs(experience.observation, experience.action)  # sum of individual q-vals | ||||
|             Q_jt = None | ||||
|             V_jt = None | ||||
|  | ||||
|             pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) | ||||
|             for agent_i in range(self.n_agents): | ||||
|                 q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], | ||||
|                                                                      experience.next_observation[:, agent_i], | ||||
|                                                                      experience.action[:, agent_i].unsqueeze(-1)) | ||||
|                 pred_q += q_values | ||||
|                 target_q_raw += next_q_values_raw | ||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             self._backprop_loss(loss) | ||||
| @@ -1,178 +0,0 @@ | ||||
| import random | ||||
| from typing import Union, List | ||||
| from collections import deque | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from algorithms.common import BaseBuffer, Experience, BaseLearner, BaseDQN, mlp_maker | ||||
| from collections import defaultdict | ||||
|  | ||||
|  | ||||
| class UDRLBuffer(BaseBuffer): | ||||
|     def __init__(self, size): | ||||
|         super(UDRLBuffer, self).__init__(0) | ||||
|         self.experience = defaultdict(list) | ||||
|         self.size = size | ||||
|  | ||||
|     def add(self, experience): | ||||
|         self.experience[experience.episode].append(experience) | ||||
|         if len(self.experience) > self.size: | ||||
|             self.sort_and_prune() | ||||
|  | ||||
|     def select_time_steps(self, episode: List[Experience]): | ||||
|         T = len(episode)  # max horizon | ||||
|         t1 = random.randint(0, T - 1) | ||||
|         t2 = random.randint(t1 + 1, T) | ||||
|         return t1, t2, T | ||||
|  | ||||
|     def sort_and_prune(self): | ||||
|         scores = [] | ||||
|         for k, episode_experience in self.experience.items(): | ||||
|             r = sum([e.reward for e in episode_experience]) | ||||
|             scores.append((r, k)) | ||||
|         sorted_scores = sorted(scores, reverse=True) | ||||
|         return sorted_scores | ||||
|  | ||||
|     def sample(self, batch_size, cer=0): | ||||
|         random_episode_keys = random.choices(list(self.experience.keys()), k=batch_size) | ||||
|         lsts = (obs, desired_rewards, horizons, actions) = [], [], [], [] | ||||
|         for ek in random_episode_keys: | ||||
|             episode = self.experience[ek] | ||||
|             t1, t2, T = self.select_time_steps(episode) | ||||
|             t2 = T  # TODO only good for episodic envs | ||||
|             observation = episode[t1].observation | ||||
|             desired_reward = sum([experience.reward for experience in episode[t1:t2]]) | ||||
|             horizon = t2 - t1 | ||||
|             action = episode[t1].action | ||||
|             for lst, val in zip(lsts, [observation, desired_reward, horizon, action]): | ||||
|                 lst.append(val) | ||||
|         return (torch.stack([torch.from_numpy(o) for o in obs], 0).float(), | ||||
|                 torch.tensor(desired_rewards).view(-1, 1).float(), | ||||
|                 torch.tensor(horizons).view(-1, 1).float(), | ||||
|                 torch.tensor(actions)) | ||||
|  | ||||
|  | ||||
| class UDRLearner(BaseLearner): | ||||
|     # Upside Down Reinforcement Learner | ||||
|     def __init__(self, env, desired_reward, desired_horizon, | ||||
|                  behavior_fn=None, buffer_size=100, n_warm_up_episodes=8, best_x=20, | ||||
|                  batch_size=128, lr=1e-3, n_agents=1, train_every=('episode', 4), n_grad_steps=1): | ||||
|         super(UDRLearner, self).__init__(env, n_agents, train_every, n_grad_steps) | ||||
|         assert self.n_agents == 1, 'UDRL currently only supports single agent training' | ||||
|         self.behavior_fn = behavior_fn | ||||
|         self.buffer_size = buffer_size | ||||
|         self.n_warm_up_episodes = n_warm_up_episodes | ||||
|         self.buffer = UDRLBuffer(buffer_size) | ||||
|         self.batch_size = batch_size | ||||
|         self.mode = 'train' | ||||
|         self.best_x = best_x | ||||
|         self.desired_reward = desired_reward | ||||
|         self.desired_horizon = desired_horizon | ||||
|         self.lr = lr | ||||
|         self.optimizer = torch.optim.AdamW(self.behavior_fn.parameters(), lr=lr) | ||||
|  | ||||
|         self.running_loss = deque(maxlen=self.n_grad_steps*5) | ||||
|  | ||||
|     def sample_exploratory_commands(self): | ||||
|         top_x = self.buffer.sort_and_prune()[:self.best_x] | ||||
|         # The exploratory desired horizon dh0 is set to the mean of the lengths of the selected episodes | ||||
|         new_desired_horizon = np.mean([len(self.buffer.experience[k]) for _, k in top_x]) | ||||
|         # save all top_X cumulative returns in a list | ||||
|         returns = [r for r, _ in top_x] | ||||
|         # from these returns calc the mean and std | ||||
|         mean_returns = np.mean([r for r, _ in top_x]) | ||||
|         std_returns = np.std(returns) | ||||
|         # sample desired reward from a uniform distribution given the mean and the std | ||||
|         new_desired_reward = np.random.uniform(mean_returns, mean_returns + std_returns) | ||||
|         self.exploratory_commands = (new_desired_reward, new_desired_horizon) | ||||
|         return torch.tensor([[new_desired_reward]]).float(), torch.tensor([[new_desired_horizon]]).float() | ||||
|  | ||||
|     def on_new_experience(self, experience): | ||||
|         self.buffer.add(experience) | ||||
|         self.desired_reward = self.desired_reward - torch.tensor(experience.reward).float().view(1, 1) | ||||
|  | ||||
|     def on_step_end(self, n_steps): | ||||
|         one = torch.tensor([1.]).float().view(1, 1) | ||||
|         self.desired_horizon -= one | ||||
|         self.desired_horizon = self.desired_horizon if self.desired_horizon >= 1. else one | ||||
|  | ||||
|     def on_episode_end(self, n_steps): | ||||
|         self.desired_reward, self.desired_horizon = self.sample_exploratory_commands() | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) | ||||
|         bf_out = self.behavior_fn(o.float(), self.desired_reward, self.desired_horizon) | ||||
|         dist = torch.distributions.Categorical(bf_out) | ||||
|         sample = dist.sample() | ||||
|         return [sample.item()]#[self.env.action_space.sample()] | ||||
|  | ||||
|     def _backprop_loss(self, loss): | ||||
|         # log loss | ||||
|         self.running_loss.append(loss.item()) | ||||
|         # Optimize the model | ||||
|         self.optimizer.zero_grad() | ||||
|         loss.backward() | ||||
|         #torch.nn.utils.clip_grad_norm_(self.behavior_fn.parameters(), 10) | ||||
|         self.optimizer.step() | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.n_warm_up_episodes: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size) | ||||
|             bf_out = self.behavior_fn(*experience[:3]) | ||||
|             labels = experience[-1] | ||||
|             #print(labels.shape) | ||||
|             loss = nn.CrossEntropyLoss()(bf_out, labels.squeeze()) | ||||
|             mean_entropy = torch.distributions.Categorical(bf_out).entropy().mean() | ||||
|             self._backprop_loss(loss - 0.03*mean_entropy) | ||||
|         print(f'Running loss: {np.mean(list(self.running_loss)):.3f}\tRunning reward: {np.mean(self.running_reward):.2f}' | ||||
|               f'\td_r: {self.desired_reward.item():.2f}\ttd_h: {self.desired_horizon.item()}') | ||||
|  | ||||
|  | ||||
| class BF(BaseDQN): | ||||
|     def __init__(self, dims=[5*5*3, 64]): | ||||
|         super(BF, self).__init__(dims) | ||||
|         self.net = mlp_maker(dims, activation_last='identity') | ||||
|         self.command_net = mlp_maker([2, 64], activation_last='sigmoid') | ||||
|         self.common_branch = mlp_maker([64, 64, 64, 9]) | ||||
|  | ||||
|  | ||||
|     def forward(self, observation, desired_reward, horizon): | ||||
|         command = torch.cat((desired_reward*(0.02), horizon*(0.01)), dim=-1) | ||||
|         obs_out = self.net(torch.flatten(observation, start_dim=1)) | ||||
|         command_out = self.command_net(command) | ||||
|         combined = obs_out*command_out | ||||
|         out = self.common_branch(combined) | ||||
|         return torch.softmax(out, -1) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     from algorithms.common import BaseDDQN | ||||
|     from algorithms.vdn_learner import VDNLearner | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, | ||||
|                         max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
|  | ||||
|     bf = BF() | ||||
|     desired_reward = torch.tensor([200.]).view(1, 1).float() | ||||
|     desired_horizon = torch.tensor([400.]).view(1, 1).float() | ||||
|     learner = UDRLearner(env, behavior_fn=bf, | ||||
|                          train_every=('episode', 2), | ||||
|                          buffer_size=40, | ||||
|                          best_x=10, | ||||
|                          lr=1e-3, | ||||
|                          batch_size=64, | ||||
|                          n_warm_up_episodes=12, | ||||
|                          n_grad_steps=4, | ||||
|                          desired_reward=desired_reward, | ||||
|                          desired_horizon=desired_horizon) | ||||
|     #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') | ||||
|     learner.learn(500000) | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue